RNAシーケンスのご紹介

佐二木 健一

アプライドゲノムスペシャリスト

RNAは生命現象の重要な構成要素の一つ

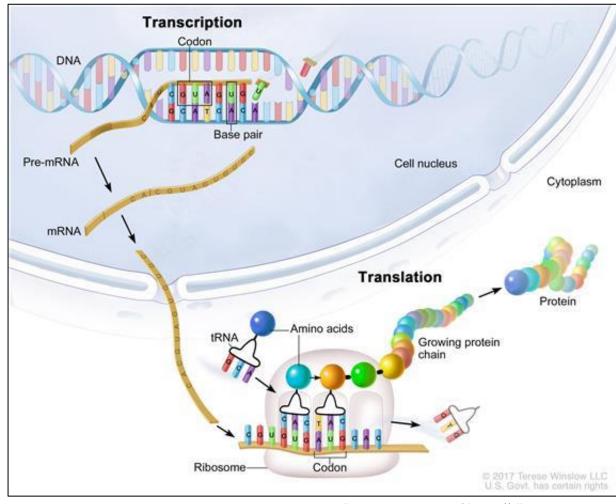
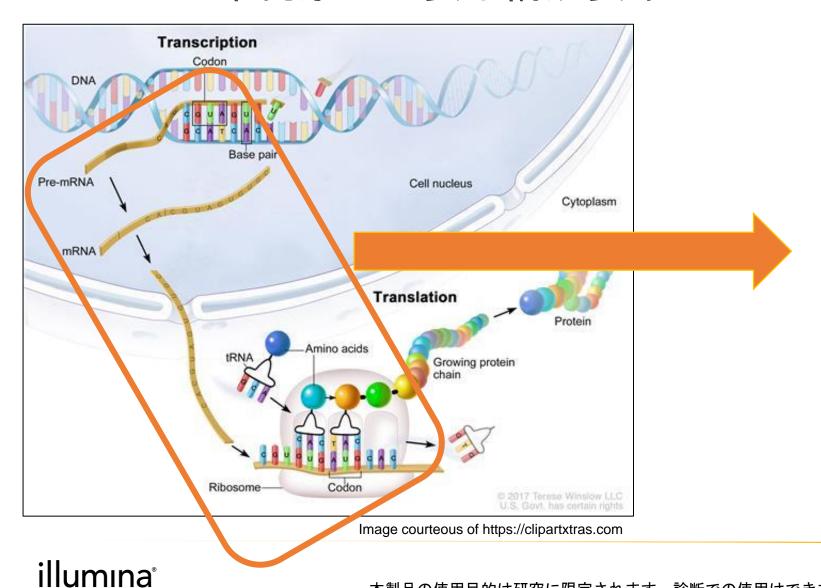
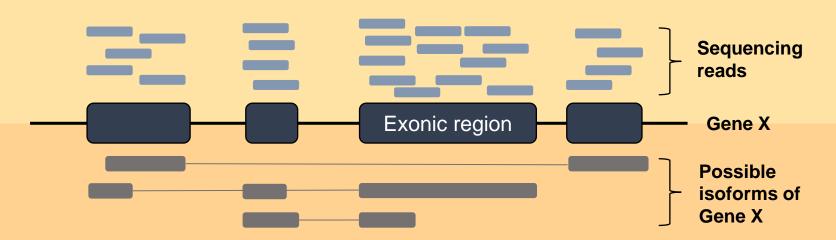



Image courteous of https://clipartxtras.com

RNAは生命現象の重要な構成要素の一つ

RNA-Seq

次世代シーケンサーによる RNAの網羅的解析

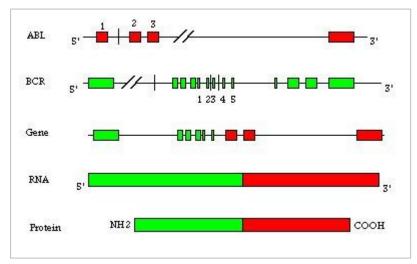

本製品の使用目的は研究に限定されます。診断での使用はできません。

RNA シーケンス

転写解析のための強力なツール

発現プロファイリング

- 単一の条件で遺伝子または転写産物の存在量を定量化する
- 異なる条件間の遺伝子または転写産物の存在量の相対的変化を測定する



転写物解析

- トランスクリプトーム全体をアセンブルします。
- 既知または新規のRNA種を検出します 例 スプライスバリアント、融合遺伝子、低分子RNA、非コードRNA、ウイルスRNA

融合遺伝子(Fusion)検出

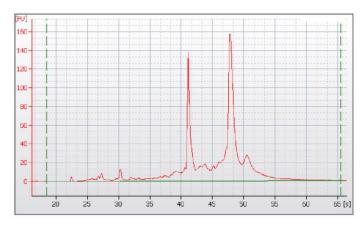
© User: A Obeidat / Wikimedia Commons / CC-BY-SA-3.0

- 融合遺伝子は、以前は独立していた2つの遺伝子の組み合わせです
- ・ 染色体転座、欠失、または逆位が原因で発生する可能性が あります
- RNA-Seqは、既知の融合と新規の融合の両方を検出するための費用効果の高い方法です。

RNAシーケンスのワークフロー

目的の生物からトータルRNA を抽出します。

RNAシーケンスのワークフロー



RNA抽出

サンプル

- RNAはRNaseの影響を受けやすいため、収集時にサンプルを安定させ、すぐに凍結または処理することをお勧めします
- DNase処理でDNAコンタミネーションを低減してください
- DNase処理により、サンプルの純度と正確な定量が保証されます
- 特定の組織タイプまたは微生物は、溶解(Lysis)を確実に行っために別途処理が必要な場合があります

品質管理

Example of high quality UHR trace from Illumina Stranded mRNA Prep Reference Guide showing 18S and 28S rRNA peaks

- フラグメント分析法を使用した質的管理(例: バイオアナライザー)
- 蛍光光度法を使用した量的管理(例:キュービット)

RIN值 & DV₂₀₀

Sample	RIN	DV ₂₀₀ *
Breast Normal	2.3	77
Breast Tumor	2.7	71
Lung Normal	2.9	55
Lung Tumor	3.2	50
Colon Normal	N/A	32
Colon Tumor	N/A	39
Stomach Tumor	2.4	30
Stomach Normal	2.6	8

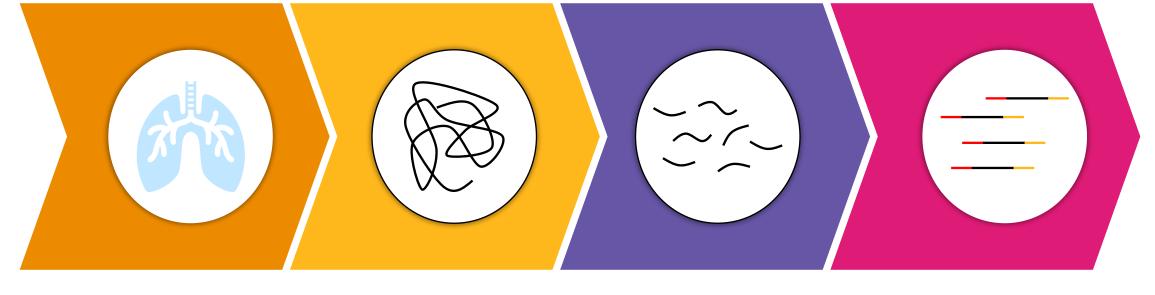
Evaluating RNA Quality from FFPE Samples (illumina.com)

- RNA Integrity Number (RIN):
 グラフの下の総面積に対する18Sおよび 28S rRNAピークの下の面積の比率
- DV₂₀₀:
 200ヌクレオチドを超えるRNA断片の割合

RNA Input Recommendations

The protocol is optimized for 10–100 ng RNA input. It accepts 1–1000 ng purified total RNA input from high-quality RNA samples (RIN \geq 9) and accepts 10–100 ng RNA input from low-quality RNA (RIN \geq 2) samples or FFPE (DV200 > 55%) samples. Library performance can vary with lower input amounts and lesser quality RNA.

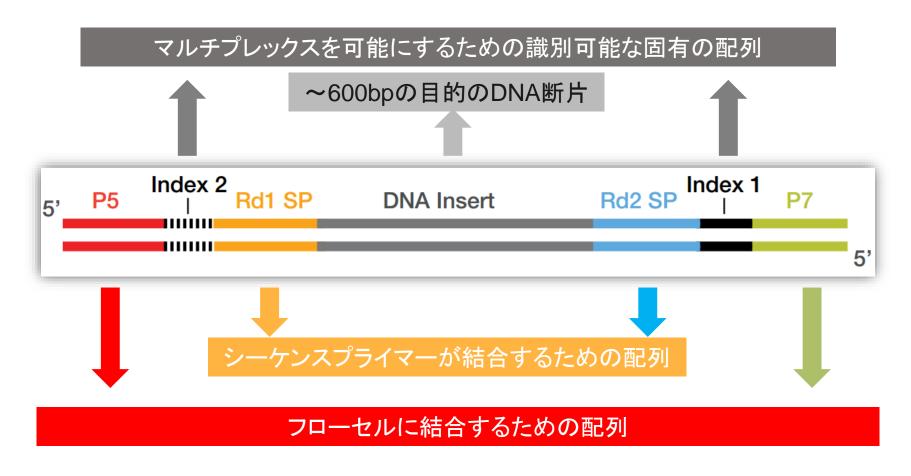
Example RNA Input Recommendations from Illumina Stranded Total RNA Prep Reference Guide



RNAシーケンスのワークフロー

そもそもライブラリーとは? サンプルの前処理

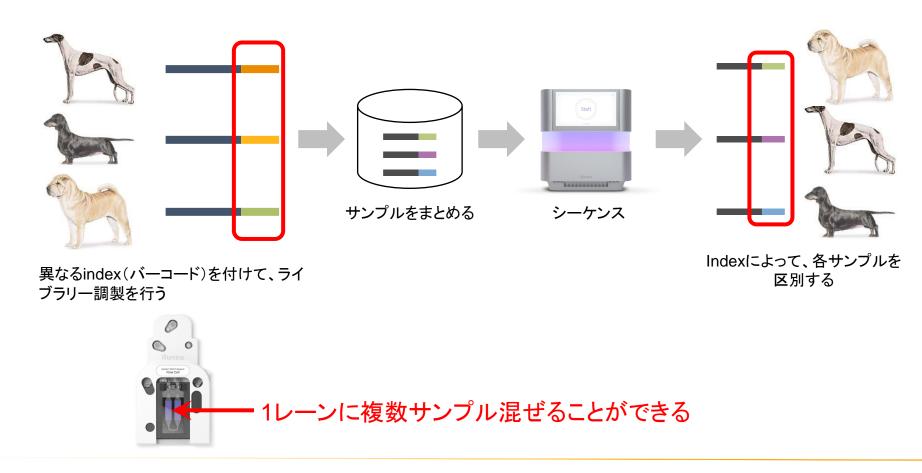
サンプル

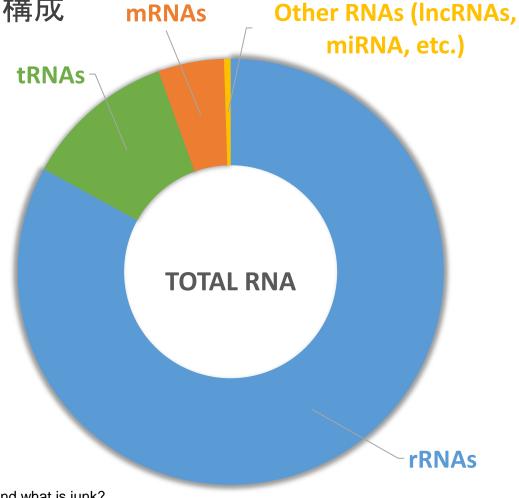

核酸 (DNA or RNA) 核酸を適切な 長さに切断 (断片化)

断片の両側に アダプター配列 を付加

illumına

ライブラリーの構造と役割


全てのイルミナシーケンサーで共通



マルチプレックス法

異なる配列のインデックスを利用することで、1回のランで多サンプルを同時にシーケンスできる

RNAライブラリー 哺乳類のRNAの構成 mRNAs Other RN miRI

- 大量に存在するrRNAと tRNAは一般的にはRNA シーケンシングから除外さ れます
- mRNA とsmall RNAを一般 的にはターゲットにして解析 を行います

Non-coding RNA: what is functional and what is junk? (2015) AF Palazzo and ES Leeより改変

ターゲットとするRNA種を得るために

Ribosomal RNA の除去

- rRNAを標的とするプローブを 使って、サンプルから除去します
- コーディング領域と非コーディング 領域の検出

2

Poly A の選択

- オリゴd(T)を使って、ポリAテールを持 つmRNAを選択します
- ポリAテールを持つ転写産物の検出

3

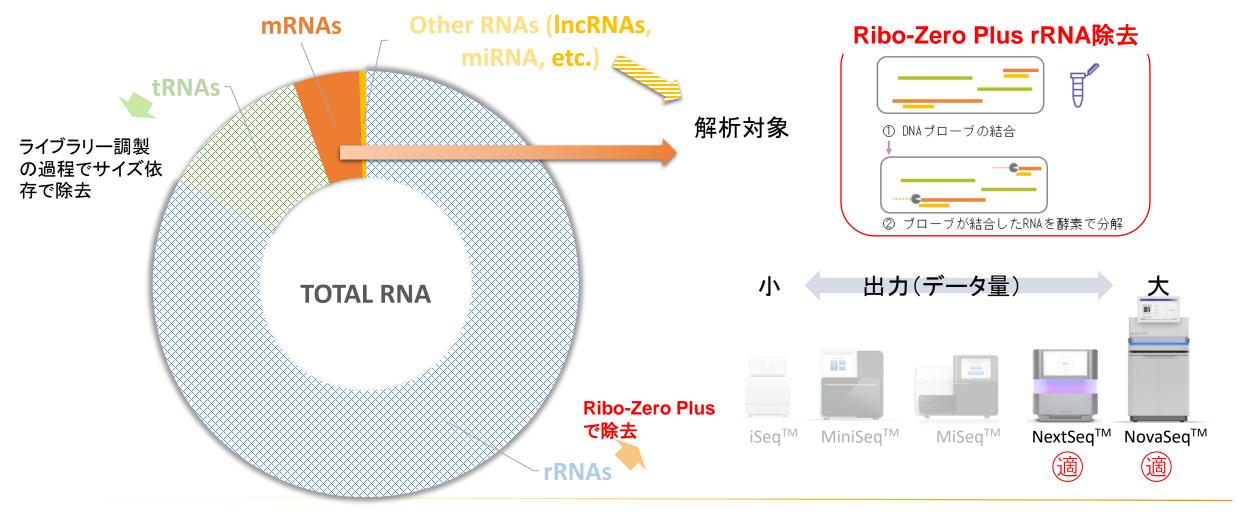
cDNA 合成 & ターゲット濃縮

- RNAからcDNAへの変換
- 特定のプローブを使用して、ター ゲット領域を選択します
- エクソームパネルなど

RNA シーケンシングソリューション

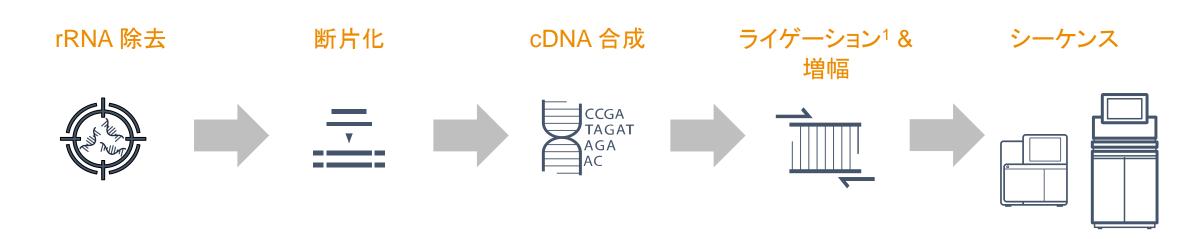
)

Ribosomal RNA の除去


Poly A の選択

cDNA 合成 & ターゲット濃縮

	トータル RNA	mRNA	ターゲット濃縮
	最大の探索力	コスト効率の高い発現解析	ターゲットを絞った検出と発見
検出対象	コーディング領域と非コーディング領域	ポリAテールを持つ転写産物	ターゲット領域
劣化したサンプル/ FFPE	✓		✓
適したアプリケーション	 グローバルな発現プロファイリング ncRNAの発見と特性評価 選択的スプライシングの検出 バイオマーカーの同定 	・ 差次的発現プロファイリング・ アイソフォームの識別・ 対立遺伝子特異的発現・ 低発現mRNAの検出	・ 対立遺伝子特異的発現・ 劣化したサンプル・ バイオマーカースクリーニング
Illumina RNA調製キット (16 & 96 サンプルキット)	Illumina Stranded Total RNA Prep with Ribo-Zero Plus	Illumina Stranded mRNA Prep	Illumina RNA Prep with Enrichment


1. キット名:Illumina Stranded Total RNA Prep with Ribo-Zero™ Plus

illumına

Illumina Stranded Total RNA Prep ワークフロー

高いライゲーション反応を活用して、高品質でシンプルな調製を提供します

過多な転写産物の除去により、 目的の標的転写産物に焦点を 合わせます ILMNシーケンスに最適な長さに 断片化されます 逆転写によりRNAをcDNAに 変換します cDNA試薬はキットに含まれます ライゲーションによりインデックス が付加され、出来たライブラリー をPCRで増幅します ILMNシステムと完全に適合する ように設計されています

Quant, gual and normalization steps not shown

Illumina Stranded Total RNA Prepのワークフロー

Illumina Stranded Total RNA Prep

LIGATION WITH RIBO-ZERO PLUS

Total RNA	
リボソームRNAの除去	
RNA断片化と変性	
First Strand cDNA合成	所要時間 7時間 ¹ 操作時間 3時間未満 ¹
Second Strand cDNA合成	
3'末端のアデニル化	
アンカーライゲーション	
断片のクリーンアップ	
ライブラリー増幅	
ライブラリーのクリーンアップ	
定量とノーマライゼーション	
シーケンス	

^{1.} 最大24サンプルを手作業で処理した際の時間で、定量とノーマライゼーションは含まれない。

Ribo-Zero Plus:酵素を用いたrRNA除去法

ロバストな手法により、多様なサンプルを扱うラボの柔軟性が向上

Total RNA

1 プローブのハイブリダイゼーション

2 rRNA除去

3 プローブの除去

興味のあるRNARibo-Zeroプローブ大量のrRNA

Ribo-Zero Plusにより単一チューブで複数生物種に対応

多様なサンプルを扱うラボでの研究にシームレスな柔軟性

- 細胞質およびミトコンドリアrRNA:ヒト、マウス、ラット
- グロビン転写産物
- ・ バクテリアrRNA (グラム陽性菌/陰性菌)

除去ターゲット

ターゲットrRNA

ヒトの細胞質rRNA	28S、18S、5.8S、5S
ヒトのミトコンドリアrRNA	12S、16S
ヒトのβグロビン転写産物	HBA1、HBA2、HBB、HBG1、HBG2
マウスおよびラットのrRNA	16S、28S
グラム陰性菌rRNA	大腸菌:5S、16S、23S
グラム陽性菌rRNA	枯草菌:5S、16S、23S

Illumina Stranded Total RNA Prepのデータ

特に低いインプット量でのワークフローを強化

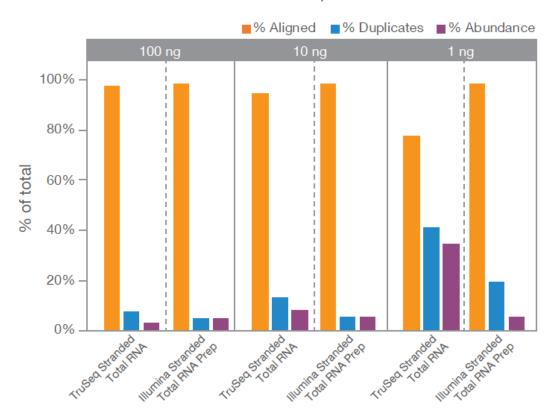
SAMPLE PROFILE

Universal Human Reference

SAMPLE INPUT AMOUNT

Total RNAで1ng、10ng、100ng

Reads


30Mリードにサブサンプ リング*

SEQUENCER

NextSeq[™] 550システム

解析

BaseSpace RNA-Seq Alignment v 2.0.1アプリ **1ng**および**100ngのRNA**インプット量で**優れた性能**を発揮 (従来のTruSeqとの比較)

*4MリードにサブサンプリングしてDuplicateの割合を算出

Illumina Stranded Total RNA Prepのデータ

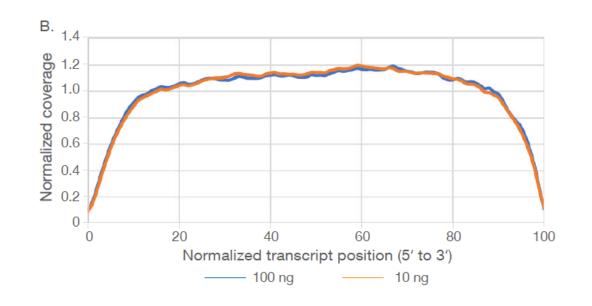
FFPEサンプルから均一で高いトランスクリプトームカバレッジ

SAMPLE PROFILE

SAMPLE INPUT AMOUNT

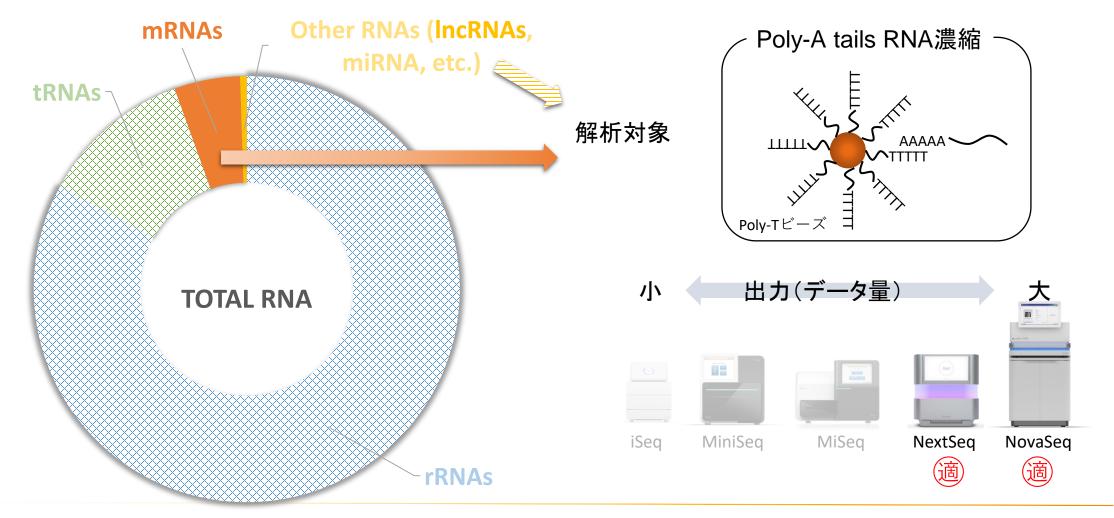
Total RNAで10ng および100ng

Reads

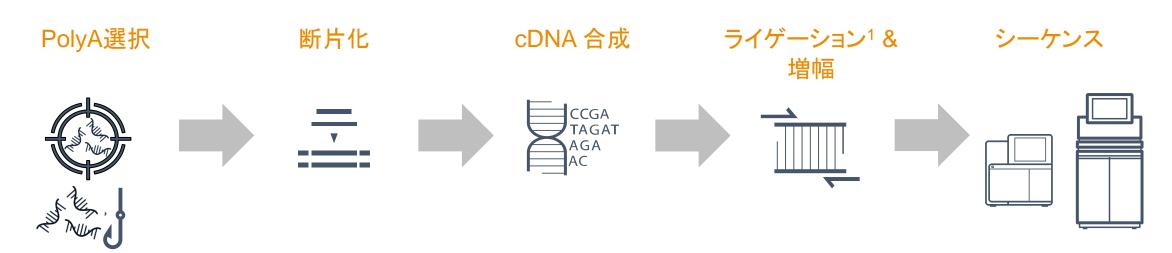

50Mリード

SEQUENCER

NovaSeq[™] 6000システム


解析

BaseSpace RNA-Seq Alignment v 2.0.1アプリ **10ng**および**100ngのRNA**インプット量で、**FFPE** RNAで **高いカバレッジ均一性**



2. キット名: Illumina Stranded mRNA Library Prep

Illumina Stranded mRNA Prep ワークフロー

高いライゲーション反応を活用して、高品質でシンプルな調製を提供します

mRNAの濃縮により、目的の標的転写産物に焦点を合わせます

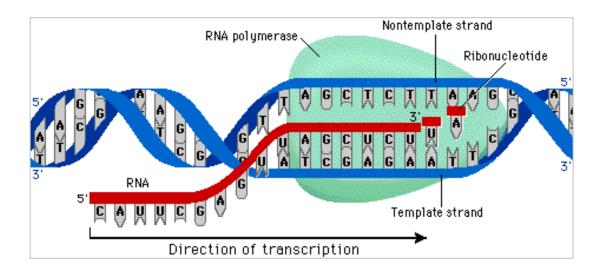
ILMNシーケンスに最適な長さに 断片化されます 逆転写によりRNAをcDNAに 変換します cDNA試薬はキットに含まれます

ライゲーションによりインデックス が付加され、出来たライブラリー をPCRで増幅します ILMNシステムと完全に適合する ように設計されています

Quant, gual and normalization steps not shown

Illumina Stranded mRNA Prepのワークフロー

Illumina Stranded mRNA Prep


LIGATION

Total RNA	
mRNA精製と断片化	
First Strand cDNA合成	
Second Strand cDNA合成	所要時間
3'末端のアデニル化	 6.5時間 ¹
アンカーライゲーション	操作時間 3時間未満1
断片のクリーンアップ	
ライブラリー増幅	
ライブラリーのクリーンアップ	
定量とノーマライゼーション	
シーケンス	

^{1.} 最大24サンプルを手作業で処理した際の時間で、定量とノーマライゼーションは含まれない。

ストランド情報/Strandednessとは?

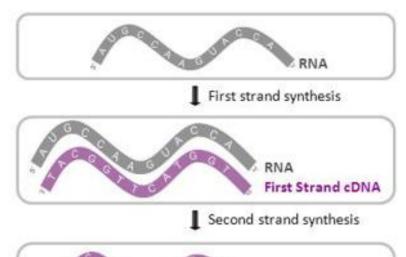
- ストランドネスは、転写産物がどのDNAストランドに由来 するかを決定します
- アンチセンス発現の検出を可能にして、トランスクリプトア ノテーションの信頼性を高めます
- 次のアプリケーションにとってストランド情報は重要です:トトランスクリプトベースのアセンブリ、完全なアノテーション、スプライスバリエーション研究

cDNAのセカンドストランド合成ステップで導入されるストランド情報

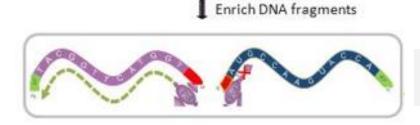
Purify and Fragment Messenger RNA

Hands-on: 46 minutes Total: 1 hour 21 minutes

Reagents: BBB, BWB, ELB, EPH3, RPBX


Synthesize First Strand cDNA

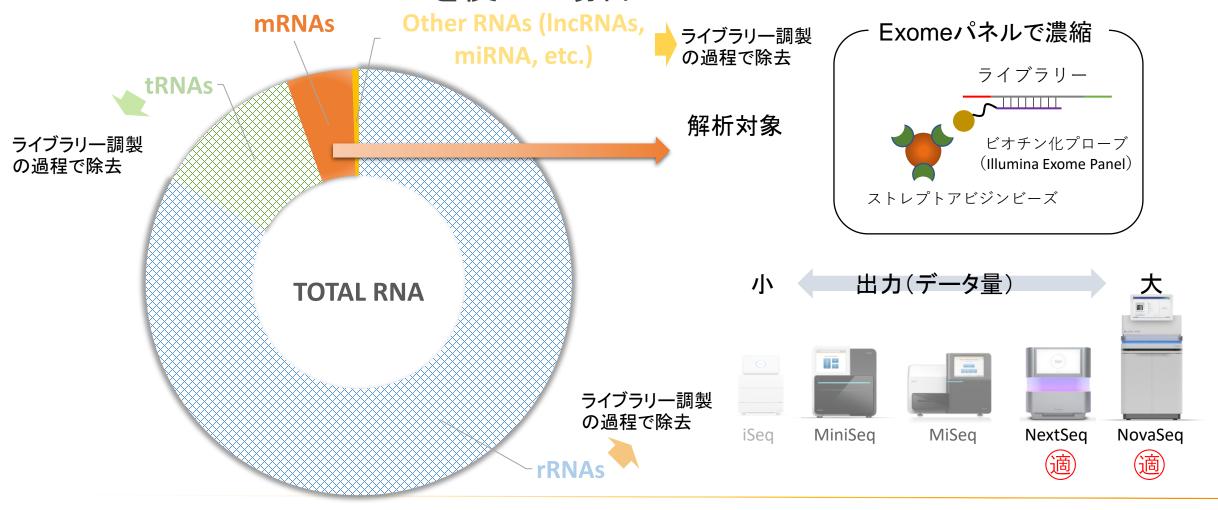
Hands-on: 5 minutes Total: 50 minutes Reagents: FSA, RVT


3 Synthesize Second Strand cDNA

Hands-on: 35 minutes Total: 1 hour 40 minutes

Reagents: 80% EtOH, AMPure XP, RSB, SMM

- 二本鎖を合成して平滑末端cDNAを生成します
 - dUTPはdTTPの代わりにセカンドストランドに組み込まれています


- ポリメラーゼはdUTPを組み込むことができません
- セカンドストランドは増幅ステップ中に抑制されます

Ligate Adapters

Second Strand cDNA

3. キット名: Illumina RNA Prep with Enrichment Exome Panelを使った場合

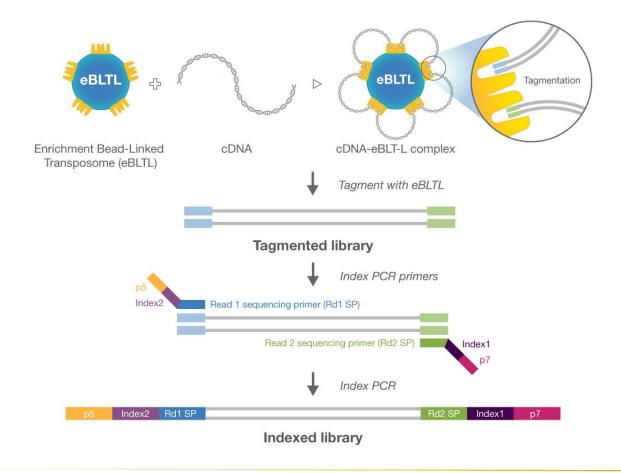
Illumina RNA Prep with Enrichment ワークフロー

超高速RNA濃縮のためにタグメンテーションケミストリーを活用1

逆転写によりRNAをcDNAに 変換します

cDNA試薬はキットに含まれます

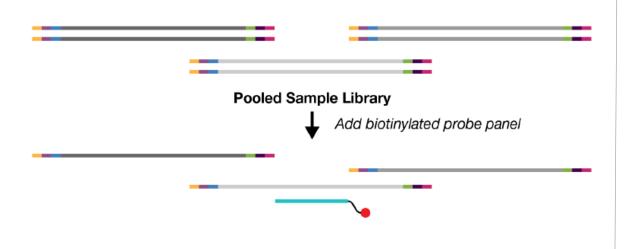
シングルステップの断片化とイン デックスの付加


ハイブリッドキャプチャベースの ターゲット濃縮 出来たライブラリーをPCRで増 幅します ILMNシステムと完全に適合する ように設計されています

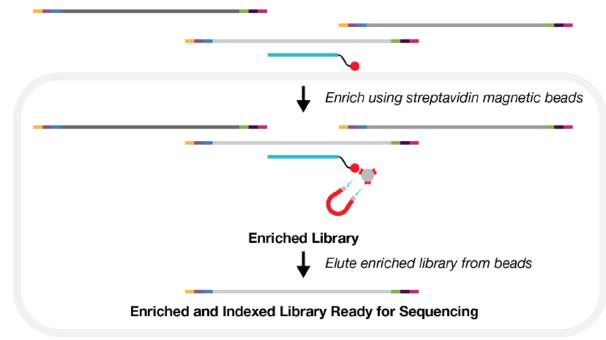
Quant, gual and normalization steps not shown

タグメンテーション

RNA濃縮用に拡張されたビーズ結合トランスポゾン(BLT)



ターゲット濃縮


プローブをハイブリダイズ

プールされたライブラリにキャプチャプローブを追加して、関心領域を標的とします

ライブラリーの濃縮

標的にしたライブラリー断片にハイブリダイズしたマグネットビーズ濃縮プローブ

RNA 濃縮用パネル

Illumina RNA Prep with Enrichment は様々なパネルに対応します

イルミナのテスト済みパネル

Illumina Exome

Covers >98% RefSeq Exome including >21k target genes, >214k target exonic regions

Illumina Respiratory Virus Panel v2

7,800 probes to detect common respiratory viruses, recent flu strains, and SARS-CoV-2

Respiratory Pathogen ID/AMR Panel

Detects >280 pathogens contributing to pneumonia >1200 Antimicrobial Resistance markers

現在利用可能なその他のオプション

Illumina Concierge Custom Panels

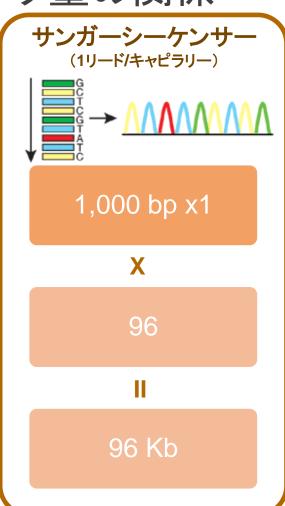
Design support available for human and non-human custom RNA enrichment panels NOTE: no performance guarantee on custom panels

Use with 3rd Party Panels

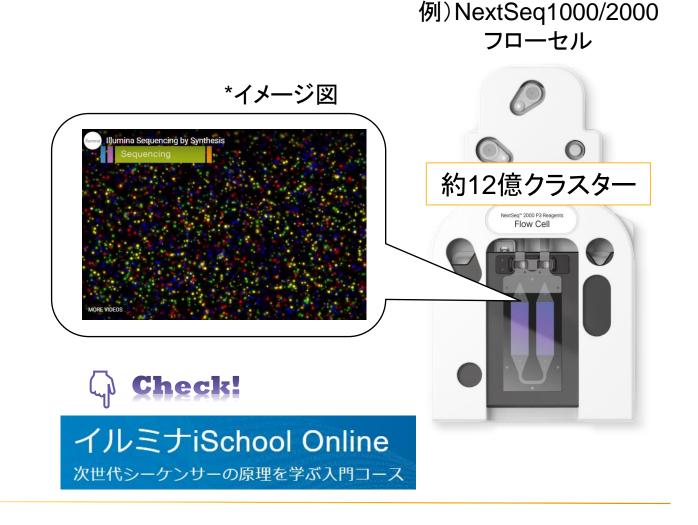
No known chemistry limitations

No Illumina testing or performance guarantee

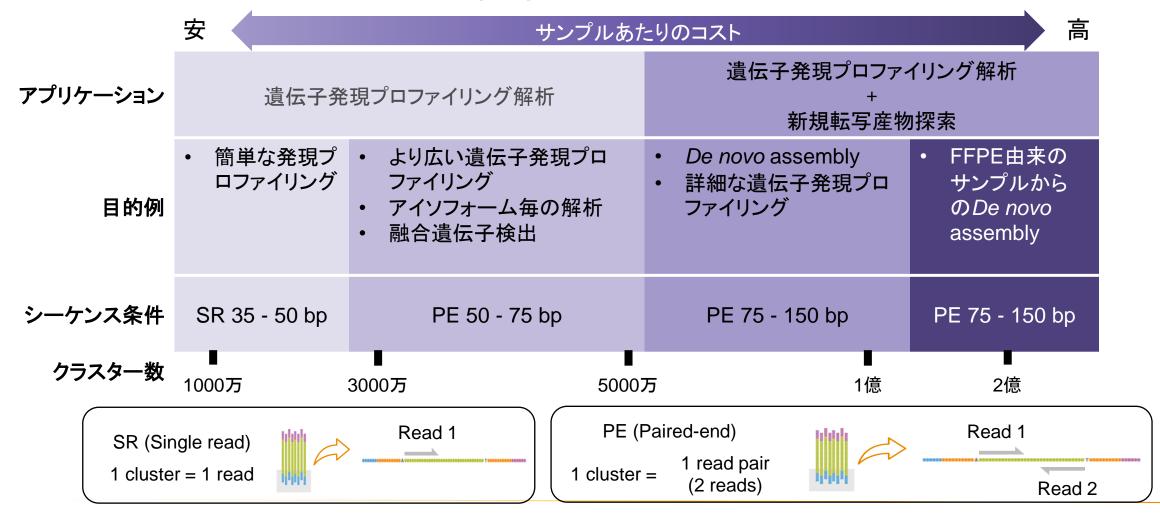
Modifications to protocol may be required


RNAシーケンスのワークフロー

リード長、リード数とデータ量の関係


RNA-Seq解析でイルミナシーケンサーを選ぶメリット

一度に解析できるリードの数が多い


解析できるライブラリー分子数が多い

高感度/多検体処理

目的のアプリケーションによって推奨必要リード数が異なる

例) Guideline from ENCODE2 RNA-seq experiments

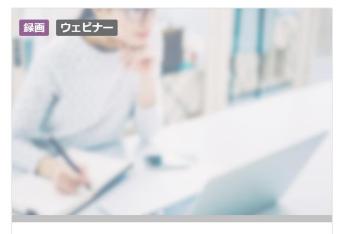
現在のイルミナ次世代シーケンサーラインナップ 2021年10月現在、フローセルごとの値

2020年11月発売 2020年1月発売

システム	iSeq™ 100	MiniSeq™	MiSeq™	NextSeq [™] 550	NextSeq™ 1000	NextSeq™ 2000	NovaSeq™ 6000
データ量 (最大値)	1.2 Gb	7.5 Gb	15 Gb	120 Gb	120 Gb	360 Gb	3 Tb
クラスター数 (最大値)	400万	2500万	2500万	4億	4億	12億	100億
ラン時間(時間)	19	24	56	29	29	48	44
発売年	2018	2016	2011	2014	2020	2020	2017

新製品、NextSeq 1000/2000

NextSeq 2000



4,422万円

NextSeq 1000

2,772万円

AUG 最新機器 NextSeq 1000 のご紹介と MiSeq からの アップグレードプログラム

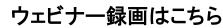
2020/08/27

イルミナ株式会社 営業本部 技術営 業部 鈴木健介

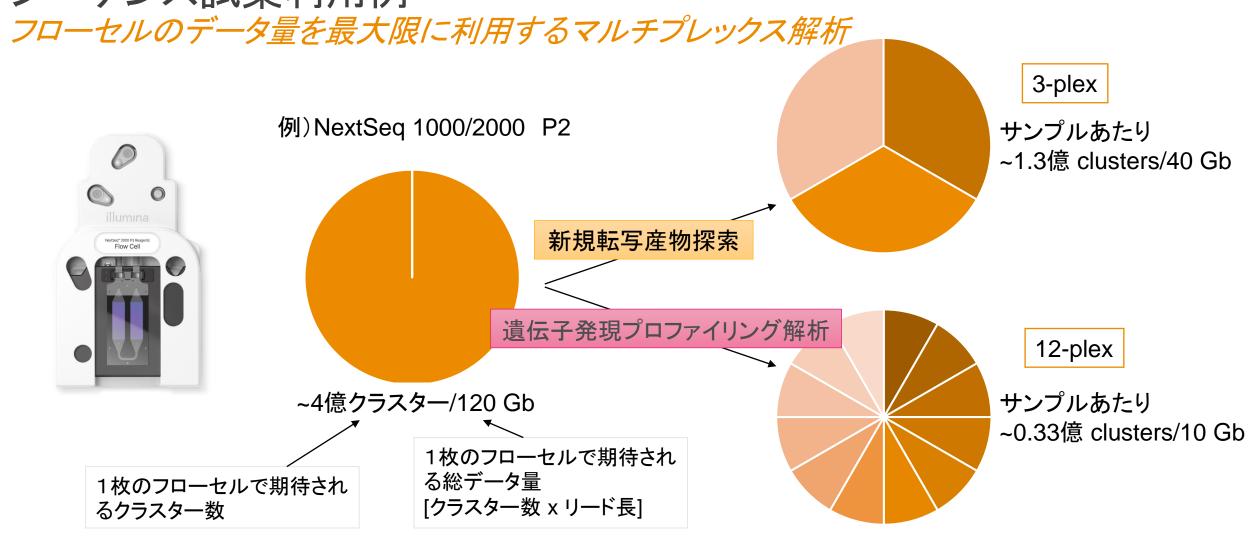
P3 Flow Cell

12億_{クラスター}360_{Gb} 最大データ量

120_{Gb}
160_{クラスター}30_{Gb}
最大データ量


P3はNextSeq2000のみで使用可能

P2 Flow Cell


P1 Flow Cell

シーケンス試薬利用例

RNA-Seq NextSeq 2000

アプリケーション: スプライスバリアントの解析

サンプルごとのリード数: 1億リード

リード長: 2 x 50 bp

装置: NextSeq 2000

シーケンシング試薬: P2試薬 100サイクル

全データ量:

2 x 50 bp x 4億リード = 40ギガベース

1ラン当たりのサンプル数: 8サンプル

	NextSeq 2000 P2 試薬	NextSeq 2000 P3 試薬
シングルリード	~4億	~12億
ペアエンド	~8億	~24億

P2試薬	100サイクル	200サイクル	300サイクル
11—ĽE	2 x 50 bp	2 x 75 bp	2 x 150 bp
リード長	1 x 100 bp	2 x 100 bp	

RNA-Seqを使用した遺伝子発現プロファイリング(参考リード数)

生物種	トランスクリプトームサイズ (推計)	推奨される <u>最低限の</u> シングルリード数*
単細胞生物 (例、バクテリア、酵母)	0.8 – 3.0 Mb	12万 – 45万リード
多細胞無脊椎動物 (例、線虫、ハエ)	10 – 30 Mb	150万 – 450万リード
複雑な多細胞生物 (例、植物、脊椎動物)	30 – 200 Mb	500万 – 1500万リード

ENCODEプロジェクトには、参考となるRNA-Seqのデータスタンダードがあります。イルミナでは適切な実験計画のため、関連分野と生物種について主要文献を参照することをお勧めします。

^{*} これらは一般的なガイドラインであり、最初に実験を実施する際の参考です。プロジェクトの統計的要求に満たす十分なカバレッジを得るために最適化を強くお勧めします。

RNAシーケンスのワークフロー

サンプルから結果に至るまでナビゲート

• イルミナのBaseSpace® Suiteは総合的なソリューションを提供

BaseSpace Clarity LIMS

サンプル追跡とワークフロー管理でラボの効率性が向上します。 複数のイルミナシーケンサーがシームレスに一体化されるため、ラン設計と性能QCが容易 になります

二次解析

BaseSpace Sequence Hubで、DRAGEN RNAアプリとDRAGEN RNA Differential Expressionアプリを使用してサンプルあたりのコストを抑えて、高精度かつ高速に解析します


三次解析

mRNAの実験では、BaseSpace Correlation Engineで、データを大規模 なキュレートナレッジベースと統合す ることができます

BaseSpace Sequence Hubでデータを安全に格納して直接共有

エンドツーエンドのmRNAシーケンシングワークフロー

DRAGENTM Bio-IT Platform

超高速でコスト効率の高い、NGS データの二次解析

DRAGENの特徴

Dynamic Read Analysis for GENomics

1 精確

SNPとINDELを高い感度と特異度で検出

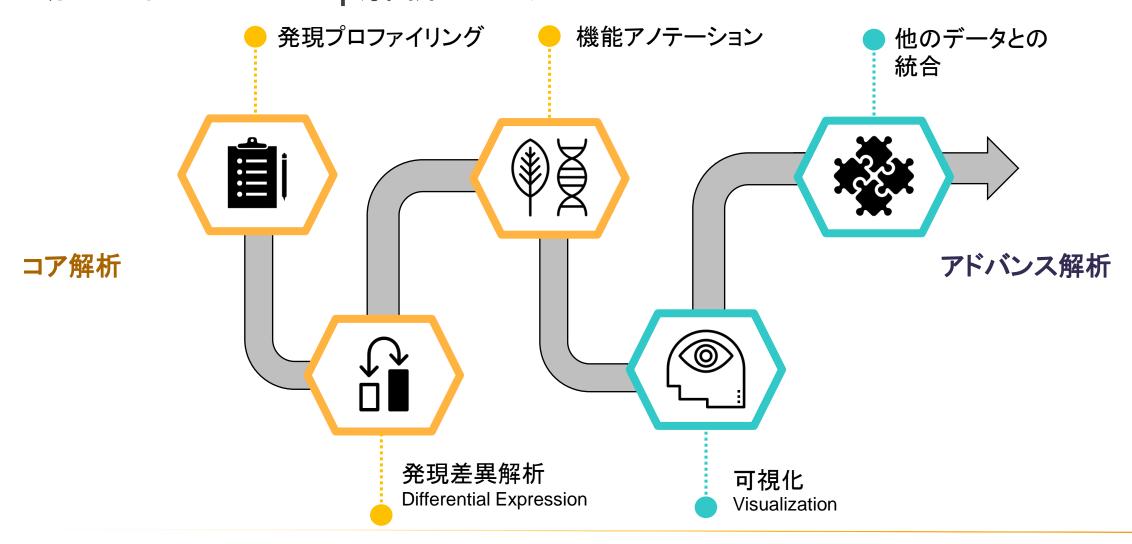
- の2 ^{超高速}
 - 30Xヒト全ゲノム解析所要時間を約25分に短縮
- 03 コストを抑えながら、必要に応じた増強が可能

オンサイトサーバーとクラウドを 必要に応じて選べる柔軟性

DRAGEN RNA pipeline とRNA-Seq Alignment 解析時間の比較

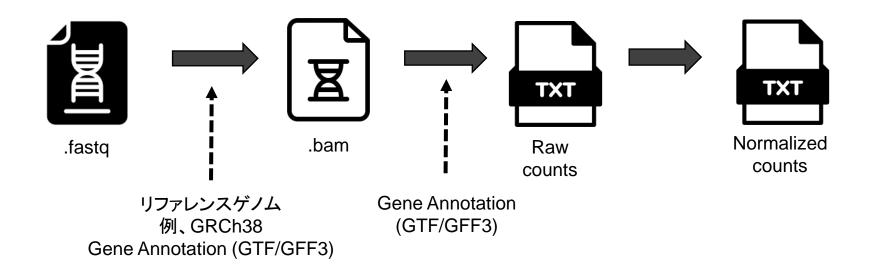
サンプル条件: ヒトmRNAサンプル4検体

リード数: 9500万リード、11,000万リード、12,000万リード、13,000万リード


リード長: 2 x 75 bp

	解析時間	iCredit
RNA-Seq Alignment	4時間 7分 13秒	42.00 iCredit (約4,956 円)
DRAGEN RNA pipeline	16分 45秒	5.00 iCredit (約590 円)

DRAGENを使うことにより解析時間、解析コストを 圧倒的に削減することが出来る

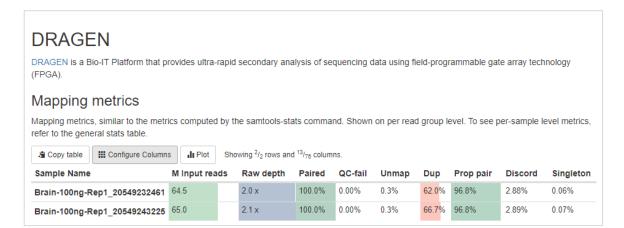

一般的な RNA-seq 解析ワークフロー

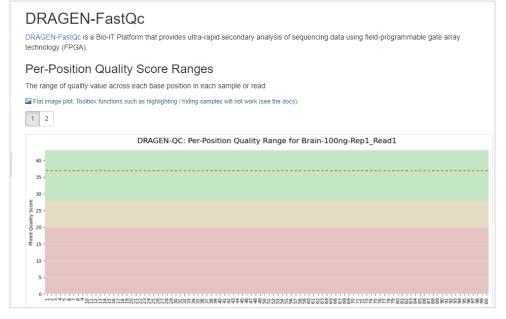
RNAサンプルの発現プロファイリング: リードからカウントへ

サンプル中の既知の遺伝子または転写産物の発現プロファイリング

リファレンスによるマッピング

DRAGEN RNA

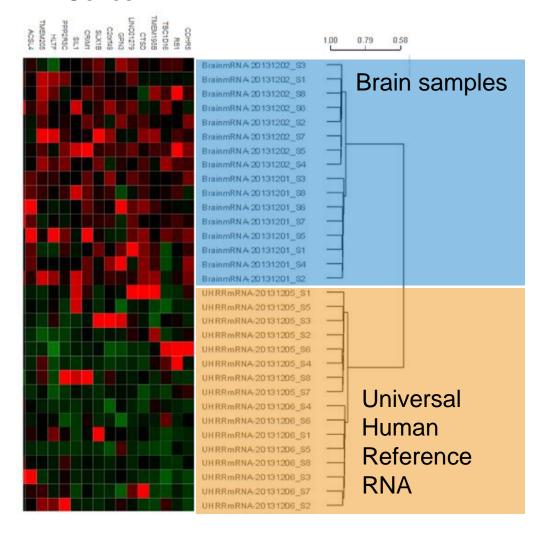

DRAGEN RNA Pipeline


Input Files

- FASTQ.
- · Optional: Custom Reference.
- . Optional: Gene Annotation File (GTF, GFF, or GFF3).

Output Files

- · Aligned reads BAM/SAM/CRAM format.
- . SJ.out.tab summarizes the high confidence splice junctions.
- Chimeric.out.junction information about split-reads which can be used to perform downstream gene fusion detection.
- fusion_candidates.preliminary and .final (if Gene Fusion is enabled) pre-filtered and post-filtered list of candidate events detected.



発現差異解析

候補の選択

- 下流解析を行う価値のある候補を絞り込むための指標例
 - 2つの条件下でlog₂Fold Changeの大きい遺伝子
 - False discovery rateで調整されたp値
- 発現シグネチャーまたはサブポピュレーションは、サンプル全体 の遺伝子発現値のクラスタリングから推測できます。

Genes

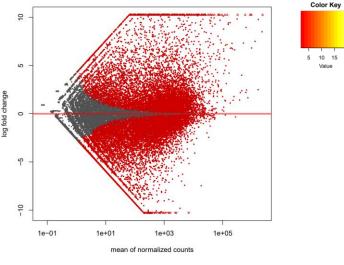
DRAGEN Differential Expression

DRAGEN Differential Expression

Input Files

This app consumes Salmon quantification files from the DRAGEN RNA app. Make sure "Enable RNA Quantification" checkbox is selected when running the DRAGEN RNA app. It is also compatible with the RNA-Seq Alignment v2 app, which outputs Salmon quantification files.

- · Salmon quant.sf file:
- . Select or upload the Gene Annotation File (GTF, GFF, or GFF3) that was used to run the DRAGEN RNA app.


Output Files

The app produces differential expression results produced by DESeq2 at the gene level and transcript level.

· genes.res.csv - CSV file of differentially expressed genes with FDR adjusted p-values

Differential Expression Metrics

Annotation Gene Count	60609
Assessed Gene Count	20422
Differentially Expressed Gene Count	17715
Merged Gene Counts	Download
Differentially Expressed Genes	Download
Differentially Expressed Transcripts	Download

mRNA_UHRR_8 mRNA_UHRR_7 mRNA_UHRR_4 mRNA_UHRR_

1875

2281

1135

4538

11

1602

1777

917

198

3742

1834

2256

655

1110

502 209

4383

22

		mRNA_UHRR_7	mRNA_UHRR_3	mRNA_UHRR_4	mRNA_UHRR_8	mRNA_Liver_8	mRNA_Liver_7	mRNA_Liver_5	mRNA_Liver_4
_3	mRNA_Liver_4	mi	RNA_Liv	ver_8	mRNA	_Liver_5	m	RNA_Li	ver_7
37	2237			1792		2063	L		2015
18	0			0		()		0
81	316			284		312	2		283
11	347			312		403	3		347
39	133			85		98	3		91
42	637			575		606	5		580

44943

3321

47644

3485

3745

gene_id	▼ baseMean ▼	log2FoldChan ▼	lfcSE ▼	stat ▼	pvalue 📉	padj	stat ▼	control	comparison 🔻	gene_name
ENSG00000188641.13	1716.479413	2.609543237	0.069563099	37.51332628	5.59E-308	6.74E-307	OK	483.3040174	2949.654809	DPYD
ENSG00000122786.20	7006.633522	1.647833042	0.043956305	37.48797905	1.45E-307	1.74E-306	OK	3390.066436	10623.20061	CALD1
ENSG00000066583.12	1415.291694	1.647292058	0.043949141	37.48178095	1.82E-307	2.20E-306	OK	684.9647379	2145.61865	ISOC1
ENSG00000137364.5	1269.321715	1.818646024	0.048531552	37.47347766	2.49E-307	3.00E-306	OK	560.7164024	1977.927028	TPMT
ENSG00000178695.6	1546.014585	2.033220512	0.054282932	37.45598175	4.80E-307	5.78E-306	OK	607.0926071	2484.936563	KCTD12
ENSG00000164938.14	1944.896859	2.167177677	0.057873751	37.44664268	6.81E-307	8.20E-306	OK	708.3378068	3181.455911	TP53INP1

ENSG0000000003.15

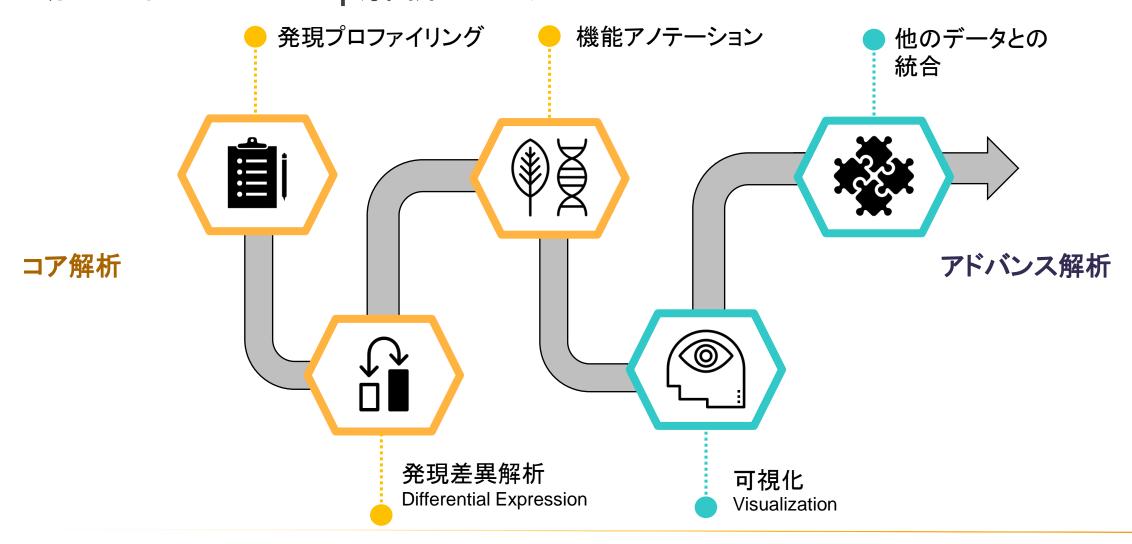
ENSG00000000005.6

ENSG00000000419.12

ENSG00000000457.14 ENSG00000000460.17

ENSG00000000938.13

ENSG00000000971.15


ENSG00000001036.14

42544

3112

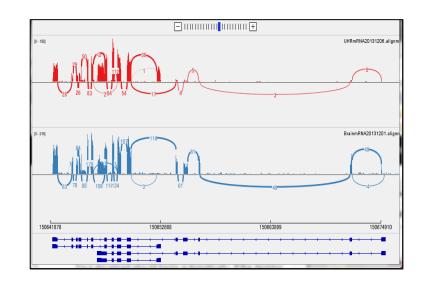
一般的な RNA-seq 解析ワークフロー

視覚化

目的

ターゲット遺伝子に関連するイベントを視覚化します。発現変化、融合遺伝子、スプライシング。

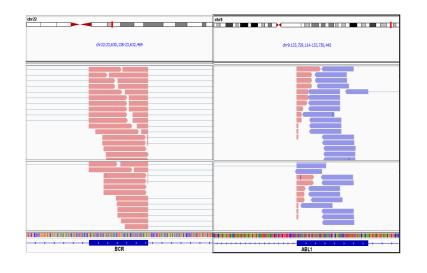
詳細


- インプット: .bam ファイルまたは .bigwig ファイル
- ツール: IGV, Sashimiプロット (スプライシング)
- より高度なユースケース: UCSCゲノムブラウザーを使用したパブリックアノテーションとのオーバーレイ
- 例、ENCODEデータベースに公開されている細胞株 データセット、GTExデータベースの正常組織データセット、TCGAデータベースの癌組織データセットの発現や クロマチンプロファイルとオーバーレイ表示します。

視覚化例

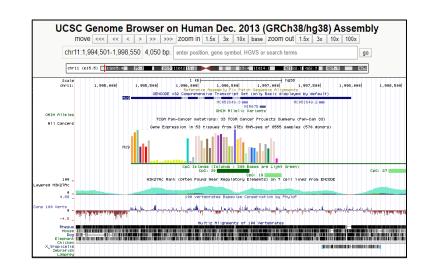
発現変化

• IGV



スプライス アイソフォーム の検出

Sashimi Plot

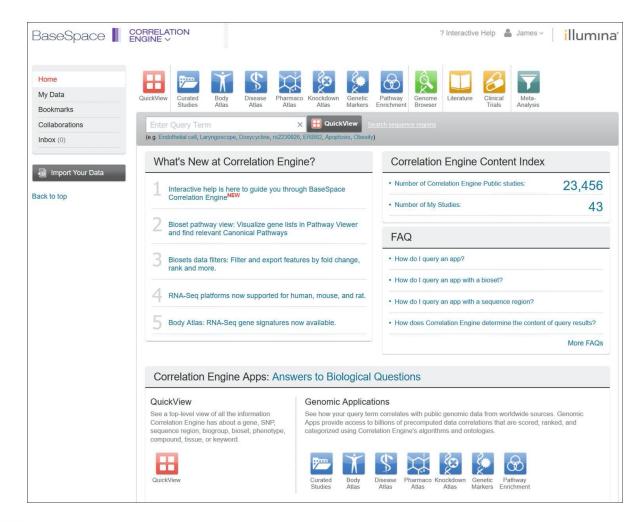


視覚化例

融合遺伝子 の検出

• IGV

パブリックアノ テーションとの オーバーレイ


 UCSC Genome Browser

BaseSpace コリレーションエンジン (Correlation Engine)

高品質でキュレートされた公開データ の大規模なナレッジベース

- 科学者のインタラクティブなクエリに基づいて、 データパターンをリアルタイムで導き出す強 カなツール
- データをアップロードすると、過去の23,000 件の研究に対してメタ分析を行うシステム
- 組織間でさまざまなデータの共有が可能

まとめ:イルミナのRNAシーケンシングソリューション

	ライ	ブラリー調製	÷	ノーケンス	解析		
	RNAインプット	Illumina RNA Prep	リード/サンプル2	サンプル/ラン ²	DRAGEN & BaseSpaceオプション³		
Total RNA コーディング領域と非コーディング領域	1-1000ng ¹	Stranded Total RNA Prep with Ribo-Zero Plus	50M	NextSeq [™] 550: 2-8 NextSeq 2000: 8-50 NovaSeq 6000: 16-200	DRAGEN RNA Pipeline DRAGEN Differential Expression		
mRNA Seq ポリAテールを持つ転写産物	25-1000ng¹	Stranded mRNA Prep	25M	NextSeq [™] 550: 5-16 NextSeq [™] 2000: 16-40 NovaSeq [™] 6000: 32-400	DRAGEN RNA Pipeline DRAGEN Differential Expression Correlation Engine (三次解析)		
RNA Enrichment w/Exome ターゲット領域	最低10ng	RNA Prep with Enrichment + Exome Panel	25M	NextSeq [™] 550: 5-16 NextSeq [™] 2000: 16-40 NovaSeq [™] 6000: 32-200	DRAGEN RNA Pipeline DRAGEN Differential Expression		
(RNA Enrichment w/Respiratory Virus Panel) SARS-CoV-2ゲノム+重複感染の検出	最低10ng	RNA Prep with Enrichment + Respiratory Virus Panel	500k	iSeq [™] 100: 8 MiSeq [™] : 1-50 MiniSeq [™] : 8-50 NextSeq [™] 550: 260-384	DRAGEN RNA Pathogen Detection IDbyDNA Explify RVOP		
	_						

Clarity LIMS FOR TRACKING & WORKFLOW MANAGEMENT

^{1.} For optimal data quality & FFPE/degraded samples use 10ng minimum

^{2.} Reads per sample can vary based on study goals, number of samples per sequencing run calculated based on listed reads per sample and max 384 UDIs

^{3.} Options for data analysis represented, processing may require data modifications

Thank You

ksajiki@illumina.com

