

Infinium® HumanCore-24 v1.2 BeadChip

Anpassbares Array für kostengünstige Genotypisierungs- und Screening-Studien in großem Umfang.

Überblick

Anpassbare Infinium HumanCore-24 v1.2 BeadChips bieten eine kostengünstige Methode für die Durchführung und Unterstützung umfangreicher genetischer Untersuchungen, insbesondere Genotypisierungsstudien in großem Umfang. Die in Zusammenarbeit mit mehreren führenden Forschungsinstituten entwickelten HumanCore-24 BeadChips enthalten mehr als 240.000 hochinformative genomweite Tag-SNPs (Single Nucleotide Polymorphisms, Einzelnukleotid-Polymorphismen) und über 20.000 hochwertige Marker, darunter Insertionen/Deletionen (Indels) und aktualisierter exomfokussierter Inhalt (Tabelle 5 und Tabelle 6). Darüber hinaus kann der Infinium HumanCore-24+v1.2 BeadChip zusätzlich bis zu 300.000 teilweise anwendungsspezifische Marker enthalten. Neben der Durchführung kostengünstiger Genotypisierungsstudien in großem Umfang können HumanCore-24 BeadChips verwendet werden, um schnell und einfach Basis-Datensets von Proben für verschiedene nachgeschaltete Anwendungen zu erhalten. Zu diesen Anwendungen gehören Studien zu häufigen Varianten und mitochondrialer DNA (mtDNA) sowie Abstammungs-, Geschlechtsbestimmungs-, Loss-of-Function-Varianten- und Indel-Studien. Infinium HumanCore-24 v1.2 BeadChips basieren auf dem zuverlässigen Infinium-Assay. In Verbindung mit dem bewährten iScan™- oder HiScan™-System, der integrierten Analysesoftware und dem Infinium-HTS-Assay (HTS steht für High-Throughput Screening) kombiniert dieser 24-Proben-BeadChip mit hoher Dichte (Abbildung 1) Erschwinglichkeit mit einer hochdurchsatzfähigen Probenverarbeitung, um qualitativ hochwertige, genomweite Informationen zu liefern.

Abbildung 1: Infinium HumanCore-24 v1.2 BeadChip: Der Infinium HumanCore-24 v1.2 BeadChip ermöglicht die informative Genotypisierung von Markern bei verschiedenen Bevölkerungsgruppen und liefert hochwertige Daten, die in zahlreichen nachgeschalteten Anwendungen verwendet werden können.

Workflow mit hohem Durchsatz

Der Infinium HumanCore-24 v1.2 BeadChip verwendet das in hohem Maße skalierbare Infinium-24-Proben-HTS-Format, das die Hochdurchsatzverarbeitung von Tausenden Proben pro Woche für große Forschungsprojekte und das Varianten-Screening im Bevölkerungsmaßstab ermöglicht. Das Infinium-HTS-Format bietet außerdem einen schnellen Workflow von nur drei Tagen, sodass Anbieter von Genotypisierungsdiensten und klinische Forscher Daten schnell erfassen und Studien vorantreiben können (Abbildung 2).

Die optionale Integration des Laborinformations- und Managementsystems von Illumina (LIMS) in den Workflow maximiert die Laboreffizienz mit automatisierten Funktionen sowie Prozess- und Qualitätssicherungsdatenverfolgung. Der Illumina ArrayLab Consulting Service bietet maßgeschneiderte Lösungen für Hochdurchsatz-Genotypisierungslabors, die ihre Effizienz und die gesamten Arbeitsabläufe optimieren möchten.

Zuverlässiger Assay von hoher Qualität

Der Infinium HumanCore-24 v1.2 BeadChip nutzt die bewährte Infinium-Assay-Chemie, um reproduzierbare Daten mit demselben Qualitätsanspruch zu generieren (Tabelle 1), den die Genotypisierungsarrays von Illumina seit über 10 Jahren erfüllen. Die Infinium-Produktlinie bietet hohe Call-Raten und hohe Reproduzierbarkeit für zahlreiche Probentypen, darunter Speichel, Blut, solide Tumore, gefrorenes Frischplasma und Abstriche der Mundschleimhaut (Tabelle 2-4). Mit dem hohen Signal-Rausch-Verhältnis der einzelnen Genotypisierungs-Calls des Infinium-Assays haben Forscher darüber hinaus Zugang zu einem genomweiten Kopienzahlvarianten-Calling (CNV) mit einem mittleren Sondenabstand von ca. 9,5 kb.

Abbildung 2: Infinium-HTS-Workflow: Das Infinium-HTS-Format ermöglicht einen schnellen Workflow von nur drei Tagen mit minimalem manuellem Aufwand.

Tabelle 1: Produktinformationen

Merkmal	Beschreibur	ng	
Spezies	Mensch		
Gesamtanzahl Marker	305.445		
Kapazität für anwendungsspezifische Bead- Typen	300.000		
Anzahl Proben pro BeadChip	24 Proben		
Erforderliche DNA-Zugabe	200 ng		
Assay-Chemie	Infinium HTS		
Unterstützte Geräte	iScan-oder HiScan-System		
Probendurchsatz ^a	ca. 2.304 Proben/Woche		
Scandauer je Probe	iScan- System 2,5 min	HiScan-Syste 2,0 min	m
Datenleistung	Wert ^b	Produktspezifikation ^d	
Call-Rate	99,70 %	> 99 % im Durchschn.	
Reproduzierbarkeit	99,99 %	> 99,9 %	
Log-R-Abweichung	0,09	< 0,30°	
Abstand			
Abstand (kb)	Mittel 9,5	Median 5,8	90. % ^c 21,7

- a. Schätzung basiert auf einem iScan-System, einem AutoLoader 2.x, zwei Tecan-Robotern und einer Fünf-Tage-Arbeitswoche.
- b. Werte stammen aus der Genotypisierung von 333 HapMap-Referenzproben.
- c. Der erwartete Wert für typische Projekte, bei denen Illumina-Standardprotokolle verwendet werden. Tumor-Proben und Proben, die mit anderen Methoden als den Standardprotokollen von Illumina vorbereitet wurden, sind hiervon ausgeschlossen.
- d. Bei weiblichen Proben sind Y-Chromosom-Marker ausgeschlossen.

Tabelle 2: Imputationsgenauigkeit von 1000Ga bei unterschiedlichen MAF-Grenzwerten

Bevölkerungsgruppe	Imputationsgenauigkeit			
b	MAF ≥ 5 %	MAF ≥ 1 %	MAF 1-5 %	
AFR	0,90	0,84	0,76	
AMR	0,94	0,89	0,79	
EAS	0,92	0,85	0,66	
EUR	0,94	0,89	0,76	
SAS	0,92	0,86	0,70	

- a. Verglichen mit Phase 3, Version 5 des "1000 Genomes Project (1000G)". www.1000genomes.org. Aufgerufen im Juli 2016.
- b. Siehe www.1000genomes.org/category/frequently-askedquestions/population

Abkürzungen: MAF: Minor Allele Frequency (Häufigkeit des seltenen Allels), AFR: afrikanisch, AMR: gemischt amerikanisch, EAS: ostasiatisch, EUR: europäisch, SAS: südasiatisch.

Tabelle 3: LD r² ≥ 0,80 aus 1000G^a bei unterschiedlichen MAF-Grenzwerten

1000G-	LD-Abdeckung (r ² ≥ 0,80)		
Bevölkerungsgruppe ^b	MAF ≥ 5 %	MAF ≥ 1 %	
AFR	0,27	0,16	
AMR	0,55	0,38	
EAS	0,65	0,53	
EUR	0,61	0,47	
SAS	0,57	0,42	

- a. Verglichen mit Phase 3, Version 5 des "1000 Genomes Project (1000G)". www.1000genomes.org. Aufgerufen im Juli 2016.
- b. Siehe www.1000genomes.org/category/frequently-askedquestions/population

Abkürzungen: LD: Linkage Disequilibrium (Kopplungsungleichgewicht), AFR: afrikanisch, AMR: gemischt amerikanisch, EAS: ostasiatisch, EUR: europäisch, SAS: südasiatisch.

Tabelle 4: LD-Mittel r2 aus 1000Ga bei unterschiedlichen MAF-Grenzwerten

Bevölkerungsgruppe ^b —	LD-Abdeckung (r²-Mittelwert)		
Devolkerungsgruppe —	MAF ≥ 5 %	MAF ≥ 1 %	
AFR	0,45	0,28	
AMR	0,70	0,50	
EAS	0,76	0,62	
EUR	0,73	0,57	
SAS	0,71	0,54	

- a. Verglichen mit Phase 3, Version 5 des "1000 Genomes Project (1000G)". www.1000genomes.org. Aufgerufen im Juli 2016.
- b. Siehe www.1000genomes.org/category/frequently-askedquestions/population

Abkürzungen: LD: Linkage Disequilibrium (Kopplungsungleichgewicht), MAF: Minor Allele Frequency (Häufigkeit des seltenen Allels), AFR: afrikanisch. AMR: gemischt amerikanisch, EAS: ostasiatisch, EUR: europäisch, SAS: südasiatisch.

Tabelle 5: Markerinformationen

Markerkategorien			Anz. der Marker
Exonische Marker ^a			41.698
Intronische Marker ^a			120.454
Nonsense-Marker ^b			9.833
Missense-Marker ^b			6.707
Synonyme Marker ^b			5.430
Mitochondriale Marker ^c			161
Indels ^c			12.312
Geschlechtschromosomen°	Χ	Υ	PAR/Homolog
	8.100	2.004	152

- a. RefSeq NCBI-Referenzsequenzdatenbank. www.ncbi.nlm.nih.gov/refseq. Aufgerufen im September 2016.
- b. Verglichen mit dem Genome Browser der University of California, Santa Cruz (UCSC). genome.ucsd.edu. Aufgerufen im August 2014.
- c. NCBI Genome Reference Consortium, Version GRCh37 www.ncbi.nlm.nih.gov/grc/human. Aufgerufen im Juli 2016.

Abkürzungen: Indel: Insertion/Deletion, PAR: Pseudoautosomal Region (pseudoautosomale Region).

Tabelle 6: Hochwertiger Inhalt

Inhalt	Anz. der Marker	Forschungsanwendung/Hinweis
ADME-Kern- und erweiterte Gene ¹	5.904	Arzneimittelstoffwechsel und -ausscheidung
Blutphänotyp- Gene ³	255	Blutphänotypen
COSMIC ⁴ -Gene	137.811	Somatische Mutationen bei Krebs
GO ⁵ CVS-Gene	37.104	Herz-Kreislauf-Erkrankungen
Datenbank genomischer Varianten ⁶	235.945	Genomische strukturelle Variationen
eQTLs ⁷	2.438	Genomische Loci, die die mRNA-Expressions- Level regulieren
Fingerabdruck- SNPs ⁸	127	Identifikation von Menschen
HLA -Gene ²	60	Krankheitsbekämpfung, Transplantatabstoßung und Autoimmunkrankheiten
Erweiterter MHC ^{a9}	1.430	Krankheitsbekämpfung, Transplantatabstoßung und Autoimmunkrankheiten
KIR-Gene ²	7	Autoimmunkrankheiten und Krankheitsbekämpfung
Neanderthal- SNPs ¹⁰	352	Neanderthal-Abstammung und Migration der menschlichen Bevölkerung
NHGRI GWAS- Katalog ¹¹	5.158	Marker aus veröffentlichten genomweiten Assoziationsstudien
RefSeq ¹² -3'-UTRs	8.541	Untranslatierte 3'-Regionen bekannter Gene
RefSeq-5'-UTRs	3.691	Untranslatierte 5'-Regionen bekannter Gene
RefSeq – Alle UTRs	11.890	Alle untranslatierten Regionen bekannter Gene
RefSeq	154.358	Alle bekannten Gene
RefSeq +/-10 kb	177.866	Alle bekannten Gene plus regulatorische Regionen
RefSeq-Promoter	6.345	2 kb Upstream aller bekannten Gene, um Promotor-Regionen einzubeziehen
RefSeq- Spleißregionen	5.325	Varianten an Spleißstellen in allen bekannten Genen

a. Erweiterter MHC ist eine Region mit ca. 8 Mb.

Abkürzungen: ADME: Absorption, Distribution, Metabolism und Excretion (Absorption, Verteilung, Metabolisierung und Ausscheidung), APOE: Apolipoprotein E, COSMIC: Catalog of Somatic Mutations in Cancer (Katalog somatischer Mutationen bei Krebs), GO CVS: Gene Ontology Annotation of the Cardiovascular System (Genontologie-Annotation des kardiovaskulären Systems), eQTL: expression Quantitative Trait Loci (expressionsquantitative Merkmalsloci), HLA: Human Leukocyte Antigen (Humanes Leukozytenantigen), KIR: Killer Cell Immunoglobin-like Receptor (immunglobulinartiger Killerzellen-Rezeptor), MHC: Major Histocompatibility Complex (Haupthistokompatibilitätskomplex), NHGRI: National Human Genome Research Institute, GWAS: Genome-Wide Association Study (genomweite Assoziationsstudie), UTR: untranslatierte Regionen, RefSeq: Referenzsequenz.

Bestellinformationen

Infinium HumanCore-24 v1.2 Kit	Katalog-Nr.
48 Proben	20024566
288 Proben	20024567
1.152 Proben	20024568
Infinium HumanCore-24+ v1.2 Kit ^a	Katalog-Nr.
48 Proben	20024569
288 Proben	20024660
1.152 Proben	20024661
a. Zusätzlicher anwendungsspezifischer Inh	alt möglich.

Weitere Informationen

Weitere Informationen über den Infinium HumanCore-24 v1.2 BeadChip und andere Genotypisierungsprodukte und -dienste von Illumina finden Sie unter www.illumina.com/genotyping

Quellen

- Genliste von PharmaADME. www.pharmaadme.org. Aufgerufen im August 2014.
- Genome Browser der University of California, Santa Cruz (UCSC). genome.ucsc.edu. Aufgerufen im August 2014.
- NCBI Reference Sequence Blood Group Antigen Gene Mutation Database. www.ncbi.nlm.nih.gov/projects/gv/rbc/xslcgi.fcgi?cmd=bgmut/systems. Aufgerufen im Juli 2016.
- Catalog of somatic mutations in cancer. cancer.sanger.uk/cosmic. Aufgerufen im Juli 2016.
- Gene Ontology Consortium. www.geneontology.org. Aufgerufen im Juli 2016.
- Database of Genomic Variants. dgv.tcag.ca/dgv/app/home. Aufgerufen im
 Util 2016
- NCBI eQTL Database. www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi. Aufgerufen im Juli 2016.
- The Allele Frequency Database. alfred.med.yale.edu/alfred/snpSets.asp. Aufgerufen im Juli 2016.
- de Bakker PIW, McVean G, Sabeti PC, et al. (2006) A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38:1166–1172.
- Neanderthal Genome Browser.
 neandertal.ensemblgenomes.org/index.html. Aufgerufen im Juli 2016.
- NHGRI GWAS Catalog. www.ebi.ac.uk/gwas/docs/downloads. Aufgerufen im Juli 2016.
- NCBI Reference Sequence Database. www.ncbi.nlm.nih.gov/refseq. Aufgerufen im Juli 2016.

Illumina, Inc. • Tel. USA (gebührenfrei) 1.800.809.4566 • Tel. außerhalb Nordamerikas +1.858.202.4566 • techsupport@illumina.com • www.illumina.com

