

Accelerate scientific breakthroughs with high-throughput sequencing.

Discover more applications. Gain new insights.

For Research Use Only. Not for use in diagnostic procedures.

Explore how researchers are using a range of high-throughput, next-generation sequencing (NGS) methods to drive their discoveries. Whether your research focus is studying the epigenetic changes in breast cancer, identifying variants in rare and undiagnosed diseases, or applying integrative genomics, NGS enables you to push the boundaries and advance science at an unprecedented pace.

What will you discover?

For Research Use Only. Not for use in diagnostic procedures.

Circulating tumor DNA detection

Detection of circulating tumor DNA (ctDNA) in early- and late-stage human malignancies

Findings

- Researchers were able to detect ctDNA in early- and late-stage subject malignancies in > 75% of subjects with metastatic pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers.
- Lower malignancy percentages were detected in < 50% of subjects with primary brain, renal, prostate, and thyroid cancers.
- ctDNA was identified in ~55% of subjects with localized tumors with significant variability between cancer type and stage.
- The authors also identified relevant V-Ki-ras2 (KRAS) mutations with a sensitivity of 87.2% and a specificity of 99.2% in a separate sample of 206 metastatic colorectal cancer subjects.
- Mutations in the MAPK pathway were found in 23 of 24 subjects who developed resistance to EFGR.

Method

The authors applied high-throughput sequencing to detect cell-free ctDNA in a sample of 640 subjects with multiple cancer types that were at different stages.

Source

Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra224.

Supporting publications

Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34:547-555.

De Mattos-Arruda L, Mayor R, Ng CK, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

For Research Use Only. Not for use in diagnostic procedures.

Recommended Illumina workflow

Sequencing

HiSeg® 2500 System, HiSeg 3000 System, HiSeq 4000 System

Analysis

BWA Whole Genome Sequencing BaseSpace® App, Tumor Normal BaseSpace® App

Exome sequencing Integrative aenomics

Whole-genome sequencing

Whole-transcriptome sequencing

Epigenetics

Studying the methylome of B cells

Findings

- Extensive CpG methylation changes during B cell maturation while non-CpG methylation disappeared upon B cell commitment.
- B cell neoplasms frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.

Method

The authors used bisulfite sequencing and methylation arrays to study the methylome of 10 B cell subpopulations spanning the entire differentiation program. An average of 22.7 million CpG sites were measured per sample.

Source

ctDNA

Kulis M, Merkel A, Heath S, et al. Whole-genome fingerprint of the DNA methylome during human B cell differentiation. *Nat Genet.* 2015;47:746-756.

Supporting publications

Fan R, Toubal A, Goni S, et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. *Nat Med.* 2016;22:780-791.

Fang D, Gan H, Lee JH, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. *Science*. 2016;352(6291):1344-1348.

Recommended Illumina workflow

Library prep

TruSeq® DNA Methylation Kit, TruSeq Methyl Capture EPIC Library Prep Kit

Sequencing

HiSeq® 2500 System, HiSeq 3000 System, HiSeq 4000 System, HiSeq X Ten System

For Research Use Only. Not for use in diagnostic procedures.

Epigenetics

Exome sequencing

Integrative genomics

Whole-genome sequencing

Whole-transcriptome sequencing

Exome sequencing

Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy

Findings

 Researchers identified a de novo brain somatic mutation in the gene encoding the MTOR, along with 8 more somatic missense mutations from the focal cortical dysplasia type II (FCDII) cases studied.

Method

A whole-exome sequencing approach was utilized to determine if FCDII is associated with brain somatic mutations. They subsequently sequenced paired brain-blood DNA from 4 individuals with FCDII (read depth, 412-668X) and then performed deep sequencing of the MTOR gene in 73 additional subjects.

Source

ctDNA

Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. *Nat Med.* 2015;21:395-400.

Supporting publications

Chubb D, Broderick P, Dobbins SE, et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. *Nat Commun.* 2016;7:11883.

Huang L, Zhang H, Cheng CY, et al. A missense variant in FGD6 confers increased risk of polypoidal choroidal vasculopathy. *Nat Genet.* 2016;48:640-647.

Recommended Illumina workflow

Library prep

TruSeq® Exome Library Prep Kit, TruSeq Rapid Exome Library Prep Kit

Sequencing

HiSeq® 2500 System, HiSeq 3000 System, HiSeq 4000 System

Analysis

Enrichment BaseSpace® App

For Research Use Only. Not for use in diagnostic procedures.

Epigenetics

Exome sequencing

Integrative genomics

Whole-genome sequencing

Whole-transcriptome sequencing

Integrative genomics

Genomic analyses identify molecular subtypes of pancreatic cancer

Findings

- Identified 32 recurrently mutated genes that aggregated in 10 pathways and 4 tumor subtypes.
- Demonstrated that each tumor subtype is enriched for different mutations and has different histopathological, epigenetic, and transcriptional characteristics.

Method

The authors combined exome sequencing, whole-genome sequencing, methylation, and RNA sequencing to study 456 pancreatic ductal adenocarcinomas.

Source

ctDNA

Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. *Nature*. 2016;531:47-52.

Supporting publications

Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. *Nature*. 2015;521(7553):489-494.

Gascard P, Bilenky M, Sigaroudinia M, et al. Epigenetic and transcriptional determinants of the human breast. *Nature*. 2015;6(6351).

Recommended Illumina workflow

Library prep

TruSeq® Exome Library Prep Kit, TruSeq Rapid Exome Library Prep Kit, TruSeq DNA PCR-Free Library Prep Kit, TruSeq Nano DNA Library Prep Kit, TruSeq DNA Methylation Kit, TruSeq Methyl Capture EPIC Kit, TruSeq Stranded Total RNA Library Prep Kit, TruSeq Stranded mRNA Library Prep Kit

Sequencing

HiSeq® 2500 System, HiSeq 3000 System, HiSeq 4000 System, HiSeq X Ten System

Analysis

BaseSpace® Sequence Hub, BaseSpace Correlation Engine, BaseSpace Cohort Analyzer

For Research Use Only. Not for use in diagnostic procedures.

Epigenetics

Exome sequencing

Integrative genomics

Whole-genome sequencing

Whole-transcriptome sequencing

Whole-genome sequencing

Large-scale whole-genome sequencing of the Icelandic population

Findings

- Researchers discovered 20 million SNPs and 1.5 million insertions-deletions (indels) in 2,636 Icelanders. Data revealed an excess of homozygosity and rare protein-coding variants in the Icelandic population.
- 61.6% of variants with a minor allele frequency of < 0.1% were found to be loss of function, 46.4% were moderate impact, 37.5% were low impact, and 36.0% were other categories.
- An association was found between a recessive frameshift mutation in MYL4 and early onset atrial fibrillation, multiple mutations in ABCB4 associated with the risk of liver disease, and an intronic variant in GNAS associated with increased thyroid-stimulating hormone levels when inherited maternally.

Method

The authors performed whole-genome sequencing on 2,636 Icelanders to provide a comprehensive understanding of the Icelandic population. Data served as the basis to impute the associations between variants in sequence and phenotype.

Source

Gudbjartsson DF, Helgason H, Gudjonsson SA, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435-444.

Supporting publications

Yano K, Yamamoto E, Aya K, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet. 2016;48(8):927-934.

Goldmann JM, Wong WS, Pinelli M, et al. Parent-of-origin-specific signatures of de novo mutations. Nat Genet. 2016;48(8):935-939.

For Research Use Only. Not for use in diagnostic procedures.

Recommended Illumina workflow

Library prep

TruSeg® DNA PCR-Free Library Prep Kit, TruSeg Nano DNA Library Prep Kit

Sequencing

HiSeg® 2500 System, HiSeg 3000 System, HiSeq 4000 System, HiSeq X System

Analysis

VariantStudio Software, BaseSpace® Variant Interpreter, Whole Genome Sequencing BaseSpace® App

Exome sequencing

Whole-genome sequencing

Whole-transcriptome sequencing

Whole-transcriptome sequencing

Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection

Findings

- Researchers identified 128 unique long transcripts and 7 mature microRNAs that were differentially expressed between pregnancies complicated by intra-amniotic infection(IAI)induced preterm birth (PTB).
- A transcriptional signature consistent with acute inflammation in the villous trophoblast (VT) was identified, highlighting novel signaling pathways involved in IAI, suggesting putative therapeutic targets and potential biomarkers associated with IAI-induced PTB.

Method

RNA sequencing was performed on 15 paired placental VT and decidua basalis (DB) specimens. Fifteen samples included 5 cases of spontaneous PTB in the setting of amniocentesis-proven IAI and histological chorioamnionitis, 5 cases of spontaneous idiopathic PTB, and 5 cases of physiologic term pregnancy.

Source

Ackerman WE IV, Buhimschi IA, Eidem HR, et al. Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection. Placenta. 2016:44:23-33.

Supporting publications

Atianand MK, Hu W, Satpathy AT, et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell. 2016;165;1672-1685

McCullen MV, Li H, Cam M, Sen SK, McVicar DW, Anderson SK. Genes Immun. 2016;17(6):349-357.

For Research Use Only. Not for use in diagnostic procedures.

Recommended Illumina workflow

Library prep

TruSeg® Stranded Total RNA Library Prep Kit, TruSeg Stranded mRNA Library Prep Kit

Sequencing

HiSeg® 2500 System, HiSeg 3000 System, HiSeq 4000 System

Analysis

RNA-Seq Alignment BaseSpace® App, Cufflinks Assembly & DE BaseSpace App

Exome sequencing Integrative aenomics

Whole-genome sequencing

Whole-transcriptome sequencing

Single-cell sequencing

G&T-Seq: parallel sequencing of single-cell genomes and transcriptomes

Findings

 Researchers discovered cellular properties that could not have been inferred by the use of DNA or RNA sequencing alone.

Method

The authors developed a method called genome and transcriptome sequencing (G&T-Seq). The protocol enables the separation and sequencing of genomic DNA and full-length mRNA from single cells. Single cells were isolated and lysed. RNA was captured using biotinylated oligo (dT) capture primers and separated from DNA using streptavidin-coated magnetic beads. The Smart-seq2 method was used to amplify captured RNA on the bead, and the MDA method was used to amplify DNA.

Source

ctDNA

Wu J, Huang B, Chen H, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. *Nat Methods*. 2015:12:519-522.

Supporting publications

Wu J., Huang B., Chen H., et al. The landscape of accessible chromatin in mammalian preimplantation embryos. *Nature*. 2016;534(7609):652-657.

Tasic B, Menon V, Nguyen T, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. *Nat Neurosci.* 2016;19:335-346.

Recommended Illumina workflow

Library prep
Single-cell suspension,
Nextera® XT DNA Library Prep Kit

Sequencing

HiSeq® 2500 System, HiSeq 3000 System, HiSeq 4000 System

Analysis

BaseSpace® Sequence Hub

For Research Use Only. Not for use in diagnostic procedures.

Epigenetics

Exome sequencing

Integrative genomics

Whole-genome sequencing

Whole-transcriptome sequencing

Industry-leading solutions.

A community of support.

From library prep, arrays, and sequencing to informatics, Illumina genomic solutions empower researchers and clinical researchers across the globe to find the answers they seek.

When you join the Illumina community, you become part of a dynamic scientific movement that includes thousands of researchers and industry thought leaders. Throughout the year, we host user group meetings, symposia, consortia, online forums, and other initiatives—all designed to bring the best minds together to share ideas and advance science.

In addition to on-site training, ongoing support, and phone consults, we offer webinars and courses at various Illumina locations. We're here with all the resources you need to accelerate progress.

A global leader in DNA sequencing and microarray-based solutions, Illumina is dedicated to improving human health by unlocking the power of the genome. Serving customers in the research, clinical, and applied markets, Illumina technology is responsible for generating more than 90% of the world's sequencing data.* Through collaborative innovation, Illumina is fueling groundbreaking advancements in oncology, reproductive health, genetic disease, agriculture, microbiology, forensic science, and beyond. By empowering large-scale analysis of genetic variation and function, Illumina is enabling studies that were not imaginable just a few years ago, moving us closer to the realization of precision medicine.

Illumina • 1.800.809.4566 toll-free (US) • +1.858.202.4566 tel • techsupport@illumina.com • www.illumina.com

For Research Use Only. Not for use in diagnostic procedures.

illumına°