illumina

TruSight[™] Oncology 500 and TruSight Oncology 500 High-Throughput*

Enabling comprehensive genomic profiling from FFPE samples, with flexibility and scalability.

Highlights

- Save time and sample with a multiplex assay Comprehensive, pan-cancer content spanning 523 cancerrelevant genes aligned with key guidelines and clinical trials
- Unlock immuno-oncology with TMB and MSI 1.94 Mb of content with sophisticated algorithms enable accurate analysis of TMB and MSI
- Achieve confidence in results Enrichment chemistry including UMIs coupled with an informatics pipeline for high accuracy in variant detection
- Address the needs of the oncology community
 both today and tomorrow
 Relevant and emerging biomarkers support a future-proof
 foundation for new solutions

One workflow for multiple tumor types and multiple biomarkers

Comprehensive genomic profiling used in recent studies with large cohorts has shown that up to 90% of samples may have informative alterations.¹⁻⁶ With limited time to return results and limited amounts of tissues, a single, comprehensive assay that assesses a wide range of biomarkers increases the chances of obtaining relevant information. To help researchers address this challenge, Illumina offers TruSight Oncology 500 and TruSight Oncology 500 High-Throughput, next-generation sequencing (NGS) assays that analyze 523 cancer-relevant genes from both DNA and RNA[‡] in one integrated workflow. The assays assess multiple variant types (Table 1), including small nucleotide variants (SNVs), insertions/deletions (indels), copy-number variations (CNVs), splice variants, fusions, and emerging biomarkers that rely on analysis of multiple genomic loci, such as tumor mutational burden (TMB) and microsatellite instability (MSI).

Hybrid-capture chemistry is optimized to capture nucleic acid targets from formalin-fixed, paraffin-embedded (FFPE) tissues. During DNA

library preparation, addition of unique molecular identifiers (UMIs)⁷ enables detection of variants at low variant allele frequency (VAF) while simultaneously suppressing errors, thus providing high specificity. Variant-calling software is developed in concert with the assay reagents.

Table 1: Variant types detected by TruSight Oncology 500 and TruSight Oncology 500 High-Throughput

Variant type	Relevant examples
SNVs and indels	KRAS G12D, EGFR exon 19 deletions, BRAF V600E
Fusions	ALK, ROS1, NTRK1, NTRK2, NTRK3
Splice variants	MET exon 14
CNVs	HER2
MSI	MSI-High
TMB	TMB-High

Illumina has established partnerships with several academic centers, pharmaceutical companies, and advocacy groups, to assist with the design, development, and evaluation of new oncology applications. To facilitate such endeavors, both TruSight Oncology 500 assays are easily integrated into current lab workflows (Figure 1). Using proven Illumina technology, with gene content relevant across multiple tumor types and including emerging biomarkers, TruSight Oncology 500 is well-positioned to be the foundation for developing future oncology diagnostic solutions.

Flexibility and scalability options

By offering both TruSight Oncology 500 and TruSight Oncology 500 High-Throughput, Illumina provides scalability. Customers can batch a large number of samples if needed. While running TruSight Oncology 500 on the NextSeq System, up to eight samples can be batched. With TruSight Oncology 500 High-Throughput on the NovaSeq System, customers can batch from 16 to 192 samples. This flexibility is enabled by availability of 192 different indices for the TruSight Oncology 500 High-Throughput solution, and NovaSeq flowcells that are designed to accommodate varying throughput levels (Figure 2).

Figure 1: TruSight Oncology 500 workflow — Both TruSight Oncology 500 assays integrate into current lab workflows, going from nucleic acids to a variant calls in 3–4 days. Local Run Manager (LRM) is available only with TruSight Oncology 500.

* TruSight Oncology 500 High-Throughput product is under development, coming in 2020.

[‡] The products used to evaluate DNA and RNA variants consist of the TruSight Oncology 500 DNA panel and the TruSight Tumor 170 RNA panel.

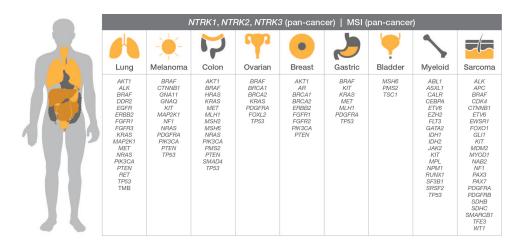


Figure 3: Genomic tumor profiling biomarkers for multiple cancer types—Content for TruSight Oncology 500 and TruSight Oncology 500 High-Throughput includes key biomarkers for multiple cancer types, and emerging pan-cancer biomarkers such as MSI, NTRK1, NTRK2, and NTRK3.

Figure 2: TruSight Oncology 500 High-Throughput scalability—The number of samples that can be batched per run can be adjusted on the NovaSeq System according to which flowcell is used.

Table 2: Multiple types of relevant biomarkers assessed for a comprehensive lung tumor assay

	DNA content	RNA [‡] content
Biomarker		
TMB	1	
MSI	1	
Biomarker genes	Small variants	Fusions
AKT1	\checkmark	
ALK	\checkmark	<i>√</i>
BRAF	1	1
DDR2	1	
EGFR	1	1
ERBB2	1	√
FGFR1	1	√
FGFR3	\checkmark	✓
KRAS	\checkmark	
MAP2K1	\checkmark	
MET	\checkmark	\checkmark
NRAS	\checkmark	
NTRK1	1	1
NTRK2	1	1
NTRK3	1	1
PIK3CA	1	√
PTEN	1	
RET	1	1
TP53	1	

Comprehensive content design

The TruSight Oncology 500 and TruSight Oncology 500 High-Throughput panels include a comprehensive list of biomarkers commonly mutated in numerous neoplasm types (Figure 3). With simultaneous analysis of both DNA and RNA[‡] various types of biomarkers relevant to a given tumor type (SNVs, indels, CNVs, fusions, splice variants, TMB, MSI) can be assessed from the same sample in a single assay (Table 2). The panels include 523 genes for SNV, indel, and CNV detection; and 55 genes for fusion and splice variant detection (Table 3), using a probe design that enables capture of both known fusions and novel fusions.

By hamessing expertise from recognized authorities in the oncology community, content was designed to include both current guidelines and emerging biomarkers, including significant coverage of key guidelines for 13 tumor types (Figure 4), and coverage of genes involved in over 1200 clinical trials.

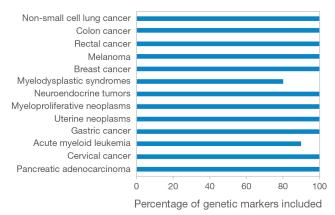


Figure 4: Content alignment to key guidelines—For each cancer type, the percentage of genetic markers in key guidelines that are included in the TruSight Oncology 500 gene panel is indicated.

[‡] The products used to evaluate DNA and RNA variants consist of the TruSight Oncology 500 DNA panel and the TruSight Tumor 170 RNA panel.

Table 3: Genes included in the TruSight Oncology 500 panel

ABL1	BRD4	CUX1	FAM175A	GATA6	IGF1	MAP3K13	NOTCH4	POLE	RPTOR	TAF1
ABL2	BRIP1	CXCR4	FAM46C	GEN1	IGF1R	MAP3K14	NPM1	PPARG	RUNX1	TBX3
ACVR1	BTG1	CYLD	FANCA	GID4	IGF2	MAP3K4	NRAS	PPM1D	RUNX1T1	TCEB1
ACVR1B	BTK	DAXX	FANCC	GLI1	IKBKE	MAPSR4 MAPK1	NRG1	PPP2R1A	RYBP	TCF3
					IKDRL IKZF1	MAPK3		PPP2R2A		
AKT1	C11orf30	DCUN1D1	FANCD2	GNA11			NSD1		SDHA	TCF7L2
AKT2	CALR	DDR2	FANCE	GNA13	IL10	MAX	NTRK1	PPP6C	SDHAF2	TERC
AKT3	CARD11	DDX41	FANCE	GNAQ	IL7R	MCL1	NTRK2	PRDM1	SDHB	TERT
ALK	CASP8	DHX15	FANCG	GNAS	INHA	MDC1	NTRK3	PREX2	SDHC	TET1
ALOX12B	CBFB	DICER1	FANCI	GPR124	INHBA	MDM2	NUP93	PRKAR1A	SDHD	TET2
ANKRD11	CBL	DIS3	FANCL	GPS2	INPP4A	MDM4	NUTM1	PRKCI	SETBP1	TFE3
ANKRD26	CCND1	DNAJB1	FAS	GREM1	INPP4B	MED12	PAK1	PRKDC	SETD2	TFRC
APC	CCND2	DNMT1	FAT1	GRIN2A	INSR	MEF2B	PAK3	PRSS8	SF3B1	TGFBR
AR	CCND3	DNMT3A	FBXW7	GRM3	IRF2	MEN1	PAK7	PTCH1	SH2B3	TGFBR.
ARAF	CCNE1	DNMT3B	FGF1	GSK3B	IRF4	MET	PALB2	PTEN	SH2D1A	TMEM12
ARFRP1	CD274	DOT1L	FGF10	H3F3A	IRS1	MGA	PARK2	PTPN11	SHQ1	TMPRSS
ARID1A	CD276	E2F3	FGF14	H3F3B	IRS2	MITF	PARP1	PTPRD	SLIT2	TNFAIP
ARID1B	CD74	EED	FGF19	H3F3C	JAK1	MLH1	PAX3	PTPRS	SLX4	TNFRSF
ARID2	CD79A	EGFL7	FGF2	HGF	JAK2	MLL	PAX5	PTPRT	SMAD2	TOP1
ARID5B	CD79B	EGFR	FGF23	HIST1H1C	JAK3	MLLT3	PAX7	QKI	SMAD3	TOP2A
ASXL1	CDC73	EIF1AX	FGF3	HIST1H2BD	JUN	MPL	PAX8	RAB35	SMAD4	TP53
ASXL2	CDH1	EIF4A2	FGF4	HIST1H3A	KAT6A	MRE11A	PBRM1	RAC1	SMARCA4	TP63
ATM	CDK12	EIF4E	FGF5	HIST1H3B	KDM5A	MSH2	PDCD1	RAD21	SMARCB1	TRAF2
ATR	CDK4	EML4	FGF6	HIST1H3C	KDM5C	MSH3	PDCD1LG2	RAD50	SMARCD1	TRAF7
ATRX	CDK6	EP300	FGF7	HIST1H3D	KDM6A	MSH6	PDGFRA	RAD51	SMC1A	TSC1
AURKA	CDK8	EPCAM	FGF8	HIST1H3E	KDR	MST1	PDGFRB	RAD51B	SMC3	TSC2
AURKB	CDKN1A	EPHA3	FGF9	HIST1H3F	KEAP1	MST1R	PDK1	RAD51C	SMO	TSHR
AXIN 1	CDKN1B	EPHA5	FGFR1	HIST1H3G	KEL	MTOR	PDPK1	RAD51D	SNCAIP	U2AF1
AXIN2	CDKN2A	EPHA7	FGFR2	HIST1H3H	KIF5B	MUTYH	PGR	RAD52	SOCS1	VEGF4
AXL	CDKN2B	EPHB1	FGFR3	HIST1H3I	KIT	MYB	PHF6	RAD54L	SOX10	VHL
B2M	CDKN2D	ERBB2	FGFR4	HIST1H3J	KLF4	MYC	PHOX2B	RAF1	SOX10	VTCN
BAP1	CEBPA	ERBB3	FH	HIST2H3A	KLHL6	MYCL1	PIK3C2B	RANBP2	SOX17	WSP3
BARD1	CENPA	ERBB4	FLCN	HIST2H3C	KMT2B	MYCN	PIK3C2G	RARA	SOX9	WT1
BBC3	CHD2	ERCC1	FLI1	HIST2H3D	KMT2C	MYD88	PIK3C3	RASA1	SPEN	XIAP
BCL10	CHD4	ERCC2	FLT1	HIST3H3	KMT2D	MYOD1	PIK3CA	RB1	SPOP	XPO1
BCL2	CHEK1	ERCC3	FLT3	HLA-A	KRAS	NAB2	PIK3CB	RBM10	SPTA1	XRCC2
BCL2L1	CHEK2	ERCC4	FLT4	HLA-B	LAMP1	NBN	PIK3CD	RECQL4	SRC	YAP1
BCL2L11	CIC	ERCC5	FOXA1	HLA-C	LATS1	NCOA3	PIK3CG	REL	SRSF2	YES1
BCL2L2	CREBBP	ERG	FOXL2	HNF1A	LATS2	NCOR1	PIK3R1	RET	STAG1	ZBTB2
BCL6	CRKL	ERRFI1	FOXO1	HNRNPK	LMO1	NEGR1	PIK3R2	RFWD2	STAG2	ZBTB7/
BCOR	CRLF2	ESR1	FOXP1	HOXB13	LRP1B	NF1	PIK3R3	RHEB	STAT3	ZFHX3
BCORL1	CSF1R	ETS1	FRS2	HRAS	LYN	NF2	PIM1	RHOA	STAT4	ZNF21
BCR	CSF3R	ETV1	FUBP1	HSD3B1	LZTR1	NFE2L2	PLCG2	RICTOR	STAT5A	ZNF703
BIRC3	CSNK1A1	ETV4	FYN	HSP90AA1	MAGI2	NFKBIA	PLK2	RIT1	STAT5B	ZRSR2
BLM	CTCF	ETV5	GABRA6	ICOSLG	MALT1	NKX2-1	PMAIP1	RNF43	STK11	
BMPR1A	CTLA4	ETV6	GATA1	ID3	MAP2K1	NKX3-1	PMS1	ROS1	STK40	
BRAF	CTNNA1	EWSR1	GATA2	IDH 1	MAP2K2	NOTCH1	PMS2	RPS6KA4	SUFU	
BRCA1	CTNNB1	EZH2	GATA3	IDH2	MAP2K4	NOTCH2	PNRC1	RPS6KB1	SUZ12	
BRCA2	CUL3	FAM123B	GATA4	IFNGR1	MAP3K1	NOTCH3	POLD1	RPS6KB2	SYK	
				-	RNA [‡] content					
ABL1	BCL2	CSF1R	ESR1	EWSR1	FLI1	KIF5B	MSH2	NRG1	PAX7	RAF1
	BRAF									
AKT3		EGFR	ETS1	FGFR1	FLT1	KIT	MYC	NTRK1	PDGFRA	RET
ALK	BRCA1	EML4	ETV1	FGFR2	FLT3	MET	NOTCH1	NTRK2	PDGFRB	ROS1
AR	BRCA2	ERBB2	ETV4	FGFR3	JAK2	MLL	NOTCH2	NTRK3	PIK3CA	RPS6KE

Content shaded in grey is analyzed for CNV detection.

[‡] The products to evaluate DNA and RNA variants consist of the TruSight Oncology 500 DNA panel and the TruSight Tumor 170 RNA panel.

Accurate assessment of TMB and MSI

TMB and MSI are emerging biomarkers that correlate with response to immunotherapies.^{8,9} TruSight Oncology 500 and TruSight Oncology 500 High-Throughput are well suited to interrogate both biomarkers, which rely upon analysis of multiple genomic loci.

Obtaining a precise and reproducible TMB value at low mutation levels can be challenging with smaller panels. Recent studies have shown that panels with larger genomic content (at least 1.5 Mb) perform well with samples containing less than 30 mutations/Mb.^{10,11} With 1.94 Mb of genomic content, TruSight Oncology 500 surpasses this requirement, demonstrating accurate TMB estimation that is highly concordant with whole-exome studies (Figure 5, Table 4).¹² The addition of UMIs during library preparation coupled with proprietary Illumina informatics reduces sequencing error rates by 10–20 fold.⁷ Removing FFPE artifacts (such as deamination, oxidation) enables analytical sensitivity as low as 5% VAF from low-quality DNA samples.

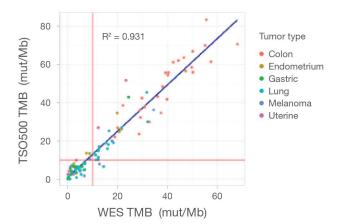


Figure 5: High concordance between TMB measurements from TruSight Oncology 500 and WES — 108 FFPE tissue samples. were analyzed by TruSight Oncology 500 (TSO500) in tumor-only workflow, and WES using tumor-normal pairs. TMB values from both assays are plotted to display high concordance ($R^2 = 0.931$).

Analysis for TruSight Oncology 500 and TruSight Oncology 500 High-Throughput uses a sophisticated proprietary algorithm to perform TMB analysis. Measuring both nonsynonymous and synonymous SNVs and indels increases analytical sensitivity by using more variants. After variant calling and error correction, germline variants and variants in low-confidence regions are filtered to deliver accurate results. Filtering germline variants also allows TMB evaluation with a tumor-only workflow (Figure 6), further supporting high-throughput sample processing.

Table 4: Concordance between WES and TruSight Oncology 500 TMB classification at low value range (10 mut/Mb)

Metric	Value
Positive percent agreement	94.7%
Negative percent agreement	96.1%
Overall percent agreement	95.4%

TMB values plotted from 108 FFPE tissue samples. Percent agreement is shown for TMB-high or TMB-low classifications, with 10 mut/Mb as the threshold value (red lines in Figure 5).

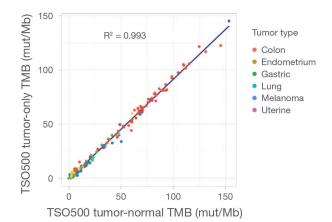


Figure 6: Reproducible TMB evaluation with tumor-only or tumor-normal workflow—TruSight Oncology 500 employs an algorithm that filters germline variants, enabling TMB analysis with a tumor-only workflow. To demonstrate concordance with tumor-normal workflows, 170 FFPE samples from six different tissue types were analyzed, and TMB values from both workflows plotted to display high concordance ($R^2 = 0.993$).

MSI status is also a biomarker correlated with response to checkpoint inhibition therapy. However, high TMB does not correlate to high MSI status in many tissues tested, warranting development as an independent biomarker with new MSI profiles in previously uncharacterized cancer types.¹³¹⁴

MSI status has been traditionally analyzed with PCR (MSI-PCR) and immunohistochemistry. While other methods deliver a qualitative result describing samples as either MSI-stable or MSI-high, NGS-based assessment with both TruSight Oncology 500 assays interrogates 130 homopolymer MSI marker sites to calculate an accurate quantitative score for MSI status (Figure 7).¹² As a multiplex assay, both TruSight Oncology 500 assays can deliver answers for both TMB and MSI status from a single assay, eliminating the need to spend precious tissue sample on iterative testing.

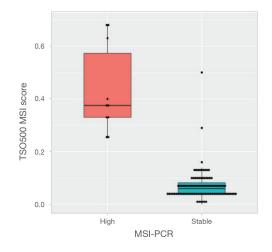


Figure 7: Quantitative assessment of MSI status—The TruSight Oncology 500 tumor-only workflow was used to analyze FFPE samples. A quantitative MSI score (Y-axis) is plotted against a qualitative score (high vs stable) obtained by analyzing the same samples with MSI-PCR (Promega MSI Analysis System).

Enrichment chemistry enables low-level variant detection from FFPE samples

Library preparation for both TruSight Oncology 500 assays is based on proven hybrid-capture chemistry using biotinylated probes and streptavidin-coated magnetic beads to purify selected targets from DNA- and RNA-based[‡] libraries. A benefit of target enrichment chemistry is the use of probes designed large enough to impart high binding specificity, but also allowing hybridization to targets containing small mutations. This mechanism reduces sample dropouts in the presence of both natural allelic variations and sequence artifacts introduced from FFPE tissue samples. The assay can reproducibly detect variants in FFPE samples as low as 5% VAF (Figure 8).

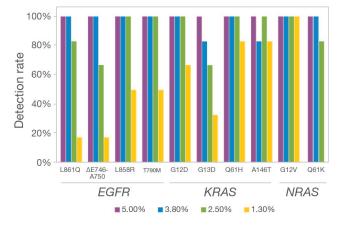


Figure 8: Small variant detection at low variant allele frequency—FFPE cell line samples with known VAF for each variant were diluted to values ranging from 1.30–5.00% VAF. Six replicates of each sample were analyzed by TruSight Oncology 500 using 40 ng DNA input.

Combined workflow for DNA and RNA

Library preparation uses a hybrid-capture method that can be simultaneously applied to DNA and RNA extracted from the same sample. After the initial steps, genomic DNA shearing and cDNA synthesis, the library prep becomes a combined workflow. Sheared DNA and cDNA are converted simultaneously into sequenceable libraries. Regions of interest are hybridized to biotinylated probes, magnetically pulled down with streptavidin-coated beads, and eluted to enrich the library pool. Libraries are then normalized using a simple bead-based protocol before pooling and sequencing.

Detection of CNVs

Copy-number changes associated with tumorigenesis in several genes and several tumor types¹⁵ can be an important component of comprehensive tumor assays. Both TruSight Oncology 500 assays include analysis of 59 CNV-associated genes, and can call amplifications with a limit of detection at 1.5× fold-change (Table 5).

Table 5: CNV detection	with	TruSight	Oncology	500
------------------------	------	----------	----------	-----

Gene	Sample	Calls/replicates	Mean fold change
MDM2	4066	2/2	7.967
EGFR	4066	2/2	5.989
MYCN	HD753	10/10	4.678
MDM2	4066	2/2	4.377
MYC	HD753	10/10	4.358
MYCN	HD753	10/10	3.972
MYC	HD753	10/10	3.632
EGFR	4066	2/2	3.462
MYCN	HD753	10/10	2.78
MYC	HD753	10/10	2.535
MYC	4066	2/2	2.526
MDM2	4066	2/2	2.503
EGFR	4066	2/2	2.123
MET	HD753	10/10	1.916
MYC	HD300/HD301	10/10	1.914
MDM2	HD300/HD301	10/10	1.719
MYC	4066	2/2	1.698
MET	HD753	10/10	1.696
PIK3CA	5982	2/2	1.695
FGF23	4138	5/5	1.674
FGF6	4138	5/5	1.671
MDM2	4066	2/2	1.648
MYC	HD300/HD301	10/10	1.617
FGF23	350	5/5	1.518
EGFR	4066	2/2	1.517
MDM2	HD300/HD301	10/10	1.502
		01.11.1 ·	

Reference DNA samples with known CNV events were examined with the TruSight Oncology 500 assay. Number of replicates (2-10) and recall are indicated in the third column.

Flexibility and reproducibility between sequencing platforms

Although TruSight Oncology 500 and TruSight Oncology 500 High-Throughput were designed to run on separate sequencing platforms with different throughput options, both assays have the same genomic content and performance expectations for variant calling. High concordance has been demonstrated between the two assays for small variant calling (Table 6), MSI (Figure 9), TMB (Figure 9), and RNA fusions (Table 7). Recommended DNA input is the same for each assay (40 ng). However, to achieve comparable results with RNA analysis, 40 ng RNA is recommended for TruSight Oncology 500 while a range of 40-80 ng RNA is recommended for TruSight Oncology 500 High-Throughput. In cases where FFPE RNA yields from FFPE tissues are low, 40 ng RNA input can still be used to detect variants expressed at mid-to-high levels with TruSight Oncology 500 High-Throughput. However, when sufficient RNA is available, 80 ng input helps maximize sensitivity for fusions present at very low concentrations (Table 7).

Table 6: Concordance between TruSight Oncology 500 and TruSight Oncology 500 High-Throughput for small variant calling.

Gene	Variant	Expected VAF	TSO500	TSO500 HT	Gene	Variant	Expected VAF	TSO500	TSO500 HT
ARID1A	P1562fs	33.50%	3/3	3/3	IDH 1	S261L	10.00%	3/3	3/3
PDGFRA	G426D	33.50%	3/3	3/3	KIT	D816V	10.00%	3/3	3/3
FBXW7	G667fs	33.50%	3/3	3/3	РІЗКСА	E545K	9.00%	3/3	3/3
BRCA2	A1689fs	33.00%	3/3	3/3	MLH1	L323M	8.50%	3/3	3/3
ALK	P1543S	33.00%	3/3	3/3	FGFR1	P150L	8.50%	3/3	3/3
APC	R2714C	33.00%	3/3	3/3	ABL2	P986fs	8.00%	3/3	3/3
NOTCH1	P668S	31.50%	3/3	3/3	NF2	P275fs	8.00%	3/3	3/3
EGFR	G719S	24.50%	3/3	3/3	EP300	K291fs	8.00%	3/3	3/3
PI3KCA	H1047R	17.50%	3/3	3/3	NF1	L626fs	7.50%	3/3	3/3
KRAS	G13D	15.00%	3/3	3/3	MET	V237fs	6.50%	3/3	3/3
NRAS	Q61K	12.50%	3/3	3/3	KRAS	G12D	6.00%	3/3	3/3
FLT3	V197A	11.50%	3/3	3/3	EGFR	L858R	3.00%	3/3	3/3
BRAF	V600E	10.50%	3/3	3/3	EGFR	ΔE746 - A750	2.00%	3/3	3/3

FFPE samples were run with each assay at 40 ng DNA input for TruSight Oncology 500 (TSO500), or TruSight Oncology 500 High-Throughput (TSO500 HT). TSO500 HT data was produced with developmental workflow.

Table 7: Concordance between TruSight Oncology 500 assays for fusion and splice variant detection.

	TSO500 supp	oorting reads				
RNA input	40	ng	40	ng	80	ng
Fusion/splice variant	rep 1	rep 2	rep 1	rep 2	rep 1	rep 2
TRMT61B-ALK	ND	ND	ND	ND	ND	ND
TMPRSS2-ERG (1 007)	93	90	68	82	99	138
TMPRSS2-ERG (2 008)	10	12	ND	6	9	10
SLC34A2-ROS1	37	31	23	22	54	37
RPS6KB1-VMP1	49	76	64	56	71	41
FGFR3-TACC3	83	68	45	64	90	85
FGFR2-COL14A1	218	223	141	170	296	182
EML4-ALK	7	10	ND	ND	9	11
CCDC6-RET	24	13	9	10	20	22
BCR-ABL1	12	16	8	10	18	24
ALK-PTPN3	11	18	7	8	8	14
MET Exon14 Skip	47	25	20	20	39	33

Fragmented RNA reference samples with known fusions were analyzed at 40 ng RNA input for TruSight Oncology 500 (TSO500), or at both 40 ng and 80 ng RNA input for TruSight Oncology 500 High-Throughput (TSO500-HT). ND = not detected. TSO500-HT data was produced with developmental workflow.

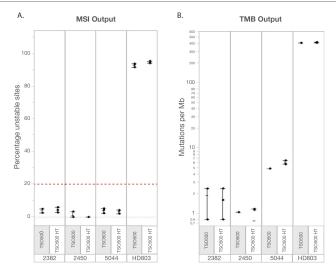


Figure 9: Concordance between TruSight Oncology 500 (TSO500) and TruSight Oncology 500 High-Throughput (TSO500 HT) for MSI (A) and TMB (B) measurement – Each assay was run with 40 ng DNA input from FFPE tissues (colon: 2382, pancreas: 2450, ovary: 5044) and a formalin-compromised cell line (HD803). Dashed line indicates value cutoff between MSI-stable and MSI-unstable status. TruSight Oncology 500 High-Throughput data was produced with developmental workflow.

High sample throughput with the NovaSeq 6000 System

The TruSight Oncology 500 High-Throughput assay was developed to run on the NovaSeq System to provide scalability to extremely high sample throughput. With 192 indices, multiplexing is optimal when running samples on the S4 flowcell (Figure 2). Each sample index performs consistently to produce sequencing metrics above quality control (QC) expectations (Figure 10).

Summary

TruSight Oncology 500 and TruSight Oncology 500 High-Throughput are NGS-based, multiplex assays that analyze hundreds of cancerrelated biomarkers in a single assay. Assessing DNA and RNA[‡] in the same workflow supports identification of a wide range of variants implicated in various tumor types. Taking advantage of extensive genomic content, TruSight Oncology 500 also provides assessment of immunotherapy biomarkers (TMB and MSI) without requiring multiple samples for iterative testing. Using target-enrichment chemistry with sophisticated tools to reduce errors, high-quality data is obtainable from FFPE samples. By expanding the TruSight Oncology 500 product franchise with the addition of the TruSight Oncology 500 High-Throughput Kit, we are enabling labs to increase their batching sizes, and process more samples per week. Leverage the power of TruSight Oncology 500 to accelerate your research goals today.

Learn more

For more information about TruSight Oncology 500, visit www.illumina.com/tso500

References

- Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846. doi:10.1038/ncomms5846.
- Boland GM, Piha-Paul SA, Subbiah V, et al. Clinical next generation sequencing to identify actionable aberrations in a phase I program. Oncotarget. 2015;6(24):20099-20110.
- Massard C, Michiels S, Ferté C, et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. *Cancer Discov.* 2017;7(6):586-595.
- Harris MH, DuBois SG, Glade Bender JL, et al. Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors: The Individualized Cancer Therapy (iCat) Study. JAMA Oncol. 2016. doi: 10.1001/jamaoncol.2015.5689.
- Parsons DW, Roy A, Yang Y, et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA Oncol. 2016. doi: 10.1001/jamaoncol.2015.5699.
- Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. *Nat Med.* 2017;23(6):703-713.
- Illumina (2017) TruSight Oncology UMI Reagents. (www.illumina.com/content/dam/illumina-marketing/documents/products/ datasheets/trusight-oncology-umi-reagents-datasheet-100000050425.pdf).
- Tray N, Weber JS, Adams S. Predictive Biomarkers for Checkpoint Immunotherapy: Current Status and Challenges for Clinical Application. *Cancer Immunol Res.* 2018;6(10):1122-1128.
- Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. *Nat Genet*. 2019;51(2):202-206.
- Buchhalter I, Rempel E, Endris V, et al. Size Matters: Dissecting Key Parameters for Panel-Based Tumor Mutational Burden (TMB) Analysis. Int J Cancer. 2018. doi: 10.1002/ijc.31878.

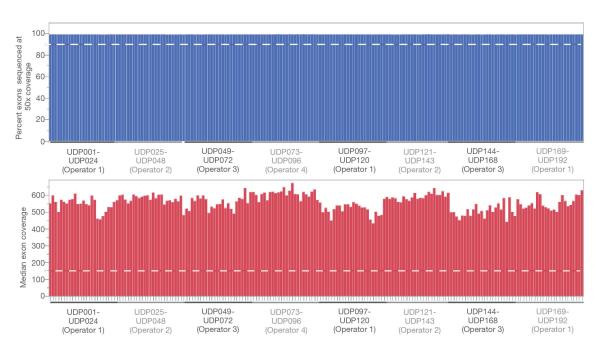


Figure 10: Reproducible performance with 192 indices in the TruSight Oncology 500 High-Throughput assay—Sets of 24 indices were aliquotted and used for independent library preparations among four independent operators. Dashed line indicates lower-level specification value for quality control.

[‡] The products used to evaluate DNA and RNA variants consist of the TruSight Oncology 500 DNA panel and the TruSight Tumor 170 RNA panel.

Table 8: Product Specifications

Parameter	TruSight Oncology 500	TruSight Oncology 500 High-Throughput*		
System	NextSeq System or NextSeq 550Dx (research mode)	NovaSeq 6000 System		
Panel size	1.94 Mb DNA, 358 kb RNA	1.94 Mb DNA, 358 kb RNA		
DNA input requirement	40 ng total	40 ng total		
RNA [‡] input requirement	40 ng total	40-80 ng total		
FFPE input requirement	Minimum recommendation of 0.65 mm ³ from FFPE tissue samples (5 slides cut at 10 microns thick)	Minimum recommendation of 0.65 mm ³ from FFPE tissue samples (5 slides cut at 10 microns thick)		
Total assay time	3–4 days from nucleic acid to variant report	3–4 days from nucleic acid to variant report		
Sequence run time	24 hours	19 hours (SP and S1), 25 hours (S2), or 36 hours (S4)		
Sequence run	2×101 cycles	2×101 cycles		
Kit size	24 or 48 samples	TBD		
Sample throughput	8 samples per run	16-192 samples per run		
	5% VAF for small variants	5% VAF for small variants		
Limit of detection	5 copies per ng RNA input for fusions	5 copies per ng RNA input for fusions (80 ng input)		
	1.5× fold-change for CNVs	1.5× fold-change for CNVs		
Analytical sensitivity	>96% (for all variant types at 5% VAF)	TBD		
Analytical specificity	>99.99%	>99.99%		
The TruSight Oncology 500 Hi	gh-Throughput is still under development.			

- Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. *Genome Med.* 2017;9(1):34. doi: 10.1186/s13073-017-0424-2.
- Illumina (2018) Analysis of TMB and MSI Status with TruSight Oncology 500. (emea.illumina.com/content/dam/illumina-marketing/documents/products/ appnotes/trusight-oncology-500-tmb-analysis-1170-2018-009.pdf).
- Vanderwalde A, Spetzler D, Xiao N, Gatalica Z, Marshall J. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. *Cancer Med.* 2018;7(3):746-756.
- Kautto EA, Bonneville R, Miya J, et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. *Oncotarget*. 2017;8(5):7452-7463.
- Beroukhim R1, Mermel CH, Porter D, et al. The landscape of somatic copynumber alteration across human cancers. *Nature*. 2010;463(7283):899-905.

Ordering information

Library prep kit	Indexes/samples	Catalog no.	
TruSight Oncology 500 DNA Kit	16 indexes	20028213	
(Includes DNA library prep and enrichment reagents. Does not include NextSeq System core reagents)	48 samples	20020213	
TruSight Oncology 500 DNA/RNA [‡] Bundle	16 indexes	20028215	
(Includes DNA library prep and enrichment reagents. Does not include NextSeq System core reagents)	24 samples	20028215	
Library prep kit plus access to the PierianDx Clinical Genomics Workspace	Indexes/samples	Catalog no.	
TruSight Oncology 500 DNA Kit, plus PierianDx	16 indexes	20032624	
(Includes DNA library prep and enrichment reagents. Does not include NextSeq System core reagents)	48 samples	20032024	
TruSight Oncology 500 DNA/RNA [‡] Bundle, plus PierianDx	16 indexes	00000606	
(Includes DNA library prep and enrichment reagents. Does not include NextSeq System core reagents)	24 samples	20032626	
Library prep kit plus NextSeq System reagents	Indexes/samples	Catalog no.	
TruSight Oncology 500 DNA Kit, for Use with NextSeq	16 indexes	20028214	
(Includes DNA library prep and enrichment reagents, and NextSeq System core reagents)	48 samples	20028214	
TruSight Oncology 500 DNA/RNA [‡] Bundle, for Use with NextSeq	16 indexes	00000010	
(Includes DNA library prep and enrichment reagents, and NextSeq System core reagents)	24 samples	20028216	
Library prep kit, plus NextSeq System reagents, plus access to the PierianDx Clinical Genomics Workspace	Indexes/samples	Catalog no.	
TruSight Oncology 500 DNA Kit, for Use with NextSeq, plus PierianDx	16 indexes	20032625	
(Includes DNA library prep, enrichment reagents, and NextSeq System core reagents)	48 samples 20032		
TruSight Oncology 500 DNA/RNA [‡] Bundle, for Use with NextSeq, plus PierianDx	16 indexes	00020607	
(Includes DNA library prep, enrichment reagents, and NextSeq System core reagents)	24 samples	20032627	

[‡] The products used to evaluate DNA and RNA variants (PN: 20028215, 20032626, 20028216, 20032627) consist of the TruSight Oncology 500 DNA panel and the TruSight Tumor 170 RNA panel.

Illumina, Inc. • 1.800.809.4566 toll-free (US) • +1.858.202.4566 tel • techsupport@illumina.com • www.illumina.com

© 2019 Ilumina, Inc. All rights reserved. All trademarks are the property of Ilumina, Inc. or their respective owners. For specific trademark information, see www.ilumina.com/company/legal.html. Pub. No. 1170-2018-010-E QB6687

