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Introduction
In recent years, the approach to understanding genetic factors in 
complex disease has relied largely on genome-wide association 
studies (GWAS). The tremendous success of GWAS has been 
propelled—in large part—by advances in microarray and sequencing 
technologies. Since 2005, high-throughput microarrays have 
supported the identification of ~2000 SNP associations with more 
than 300 complex diseases.1 While GWAS has reliably identified 
thousands of SNP-disease associations, it is poorly equipped to 
reveal the specific, molecular mechanisms of complex diseases. 
Therefore, investigators have increasingly turned to epigenome-wide 
association studies (EWAS) to explore how methylation states play 
a role in the etiology of complex disease phenotypes.2,3 Additionally, 
advances in DNA methylation chips—such as increasing throughput 
capacity and complexity of coverage—have enabled investigators to 
identify significantly smaller effect size associations. While early EWAS 
focused primarily on cancer research,4,5 these technology advances 
have fueled the expansion of research into a broad range of heritable 
diseases such as type 2 diabetes, obesity, and autoimmunity.6,7 

This application note describes the methods and results of an 
EWAS relating maternal smoking during pregnancy to differential 
DNA methylation patterns in infants.8 The study used the Infinium 
HumanMethylation450 BeadChip, an assay which allows researchers 
to interrogate > 485,000 methylation sites per sample at single-
nucleotide resolution. This BeadChip covers 99% of RefSeq gene 
regions, 96% of CpG islands, as well as CpG dinucleotides outside 
of islands and promoter regions. The BeadChip protocol requires 500 
ng of bisulfite-treated DNA per sample and can process 12 samples 
per chip. The kit also includes a protocol for processing formalin-fixed 
paraffin-embedded (FFPE) samples, making it an ideal choice for 
EWAS of tumor samples. 

Experimental Design
Types of EWAS

Current EWAS designs fall into one of four common categories:

•	 Retrospective studies include unrelated individuals who are 
recruited into case and control groups based on observed 
phenotypes. Retrospective studies take advantage of existing gene 
expression databases that can be integrated with epigenetic data; 
however, they cannot control for environmental or treatment-related 
factors that may cause epigenetic variation.

•	 Disease-discordant monozygotic twin studies can control for 
genetic factors associated with a disease of interest. However, 
it can be difficult to recruit large cohorts to provide adequate 
statistical power.

•	 Parent-offspring pair studies can identify epigenetic markers that 
are transmitted across generations. They can integrate genomic 

Figure 1: Epigenome-Wide Association  
Between Maternal Cotinine and CpG Methylation  
 
 
 
 

Methylation of 473,844 CpGs was measured in cord blood from the MoBa 
cohort. Twenty-six CpGs (10 genes) reached Bonferroni-corrected statistical 
significance (p < 1.06 × 10–7, represented by the horizontal line). Red and 
blue alternating colors are used to distinguish between chromosomes.

Human Epigenome-Wide Association Studies
Infinium® HumanMethylation450 BeadChip identifies differential DNA methylation in newborns 
exposed to maternal smoking during pregnancy.

and epigenomic profiling to determine whether parental environment 
influences phenotypes in offspring. However, as with twin studies, it 
can be difficult to recruit adequately large cohorts.

•	 Longitudinal cohort studies follow individuals who are initially 
disease-free over many years. They minimize the effects of 
confounders due to differences between cases and controls. 
These studies are ideal for observing the progression of epigenetic 
changes over time. However, they are slow and expensive  
to conduct. 

Methods

The study analyzed 1,062 parent-offspring pairs from the Norwegian 
Mother and Child Cohort Study (MoBa).9,10 The MoBa cohort was 
assembled to examine the association between maternal plasma 
folate and childhood asthma status at three years of age. The authors 
of the current study used blood cotinine as a marker for maternal 
smoking. A replication analysis was also performed as part of the 
newborn epigenetics study (NEST) in Durham, NC.11 The replication 
study used cord blood DNA samples from 18 newborns of mothers 
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Table 1: Differential Methylation in Cord Blood DNA in Relation to Maternal Cotinine

Methylation was measured in the MoBa study population. CpGs with Bonferroni-corrected statistical significance (p < 1.06 × 10–7) are listed, sorted by chromosome 
and position. aChromosome. bRegression coefficient. cStandard error for regression coefficient. dMaternal plasma cotinine (nmol/L) measured around gestational 
week 18 (undetectable ≤ 0; low > 0–56.8; moderate > 56.8–388; high > 388). Values > 56.8 nmol/L indicate active smoking.

with self-reported smoking during pregnancy and 18 controls with no 
maternal smoking reported. Bisulfite conversion was performed for 
all DNA samples using commercially available kits (Zymo Research). 
Methylation status was measured at 485,577 CpGs in cord blood 
using the Infinium HumanMethylation450 BeadChip. Illumina 
GenomeStudio® Methylation Module v1.0 software was used to 
calculate the methylation level at each CpG as a beta value.12 The 
analysis reported the detection P value for each beta, representing 
the difference between the signal for a given probe and background 
(where background is calculated as the average for all negative 
controls).

 
Analysis and Results

Data Analysis

To facilitate analysis of results obtained from the 
HumanMethylation450 BeadChip assay, Illumina provides two sources 
of SNP data: the HumanMethylation450 BeadChip manifest file and 
a more comprehensive Supplementary SNP list that is updated every 
3 months. These resources can be accessed from the MyIllumina 
customer portal. Information from the Supplementary SNP list can 
be imported directly into the methylation module of GenomeStudio 
analysis software.

The final statistical model in this study included variables that were 

associated with cotinine (p < 0.1) and possibly related to methylation 
levels, such as maternal age, maternal education, and parity. The 
results were adjusted for childhood asthma status at three years of 
age, although this made little difference in the results. 

All NEST samples and CpGs passed quality control. The researchers 
used unadjusted linear regression models to examine the association 
between maternal smoking during pregnancy and methylation in 
newborn cord blood at each of the 26 CpGs that were significantly 
associated with plasma cotinine (p < 1.06 × 10–7) in the MoBa 
population, and they calculated a one-sided p value for each CpG. 
After applying a Bonferroni correction for 26 tests, the level of 
significance was adjusted to 0.0019. 

To assess the potential impact of variation according to white blood 
cell subtype, the researchers measured DNA methylation using the 
HumanMethylation450 BeadChip in 21 cord blood samples collected 
at the same facilities as the NEST samples that had been separated, 
while fresh, into mononuclear cells (MN) and polymorphonuclear cells 
(PM) using Lympholyte®-poly (Cedarlane Laboratories Limited, Hornby, 
Ontario). A paired t-test was used to evaluate differential methylation 
between PM and MN cell types for the top 26 CpGs.

The researchers employed a single CpG lookup approach to compare 
these results with those from other methylation studies. A CpG with 
a p value < 0.05 was considered to be statistically significant. All 
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Figure 2: Replication Analysis of Differential Methylation by Smoking Status
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The difference in median methylation intensity (β) by smoking status among MoBa and NEST participants is shown for the top 26 CpGs identified, grouped by gene.

statistical analyses were performed using R (R Development Core 
Team 2010) and Bioconductor13 packages.

 
Epigenome-Wide and Replication Analyses Results

The researchers observed statistically significant associations between 
maternal smoking during pregnancy and altered methylation levels in 
offspring based on maternal plasma cotinine levels and methylation 
in cord blood. These changes occured in 26 CpGs that mapped to 
10 genes in the MoBa cohort. These CpGs met strict Bonferroni-
corrected statistical significance (p < 1.06 x 10–7; Figure 1). In the 
NEST cohort, despite the small sample size (n = 18), researchers 
found a striking degree of replication, with estimates for 21 of the 26 
identified CpGs showing P values < 0.05 (Table 1). Five of the CpGs 
met the criteria for strict Bonferroni-corrected statistical significance. 
Two of the CpGs were located in CYP1A1 and one in AHRR, genes 
known to be involved in detoxification pathways for tobacco smoke. In 
addition, two CpGs were identified in GFI1, a gene that has not been 
previously implicated in a response to tobacco smoke. The magnitude 
of the differences between smokers and non-smokers in NEST, and 
those between women with plasma cotinine > 56.8 nmol/L versus ≤ 
56.8 nmol/L in MoBa, were very similar (Figure 2).

In this study, maternal smoking also displayed a dose-dependent 
association with lower methylation of AHRR CpGs and higher 
methylation of CYP1A1 CpGs in newborn cord blood. These opposite 

effects are biologically relevant, because the two genes have opposing 
functions in the AhR pathway.14  Notably a previous study—which 
also used the HumanMethylation450 BeadChip—showed lower 
methylation levels at the same CpGs in adult smokers.15 Thus, the 
data demonstrate that functionally important methylation changes in 
some adult smokers may already be present at birth due to maternal 
smoking during pregnancy.

The authors report that the HumanMethylation450 BeadChip offers 
greatly improved coverage over the previous HumanMethylation27 
BeadChip: none of the 26 CpGs identified in this study were present 
on the HumanMethylation27 BeadChip.

Future Directions
Early EWAS focused primarily on highly pronounced epigenetic 
modifications associated with cancer. As this study demonstrates, 
EWAS can also offer significant insight into lower effect size epigenetic 
modifications occurring in utero. The increasing availability of CpG 
methylation information and associated high-resolution methylation 
maps for various tissue types will enable EWAS for many diseases. 
The efforts of the International Human Epigenome Consortium (IHEC) 
will play a key role in this regard.

Integration of EWAS and GWAS data will also enable a powerful 
view into the underlying causes of complex diseases. The 



Illumina • 1.800.809.4566 toll-free (U.S.) • +1.858.202.4566 tel • www.illumina.com

For research use only

© 2013 Illumina, Inc. All rights reserved.
Illumina, IlluminaDx, BaseSpace, BeadArray, BeadXpress, cBot, CSPro, DASL, DesignStudio, Eco, GAIIx, Genetic Energy,  
Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, NuPCR, SeqMonitor, Solexa,  
TruSeq, TruSight, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered  
trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners.  
Pub. No. 270-2013-002 Current as of 27 November 2013

Application Note: Epigenetic Analysis

HumanMethylation450 BeadChip covers 99% of RefSeq genes, 
20,000 of which are represented in Illumina’s HumanHT-12 v4 
Expression BeadChip. A study analyzing SNPs, gene expression, and 
DNA methylation in 77 HapMap cell lines identified SNPs that affect 
both gene expression and DNA methylation.16 Further studies pairing 
GWAS with EWAS will provide valuable insight into the role of genetic 
variation in complex diseases.

 
Conclusions

The information derived from EWAS, facilitated by technologies such 
as Illumina Infinium HumanMethylation450 BeadChip, provides a fresh 
look at genetic variation that cannot be obtained from GWAS alone. 
Recent advances in methylation arrays are enabling the study of 
epigenetics in a growing range of complex diseases such as diabetes, 
autoimmunity, autism, obesity, and more.17 Further integration of 
EWAS with GWAS—as well as the increased availability of biobanks 
for well-designed, longitudinal cohort studies—will greatly contribute to 
the understanding of disease-associated genetic variations.

Learn More 
To learn more about epigenetics and array-based methylation analysis, 
go to www.illumina.com/applications/epigenetics.ilmn 

To learn more about the Infinium HumanMethylation450 BeadChip, go 
to www.illumina.com/products/methylation_450_beadchip_kits.ilmn 
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