TruSeq Targeted RNA Expression Checklist

Synthesize cDNA

□ 1 Vorte	X KC	.SI 1	m	0	seconds.
-----------	------	-------	---	---	----------

 \Box 2 Centrifuge at 600 × g for 5 seconds.

 \Box 3 Dilute according to your input RNA:

- \triangleright Dilute 50 ng intact total RNA with nuclease-free water to 5 μ l.
- Dilute ≥ 200 ng degraded RNA with nucleasefree water to 3 μl.
- $\Box 4$ Add diluted RNA to a plate:
 - \blacktriangleright Add 5 μ l diluted intact total RNA to the CDP1 plate.
 - Add 3 µl diluted degraded RNA to the CDP plate.
- □5 Combine the following volumes in a 1.7 ml microcentrifuge tube. Multiply each volume by the number of samples being prepared.

Reagent	Intact Total RN A Volume (µl)	Degraded RN A Volume (µl)
RCS1	4.4	4.4
ProtoScript II Reverse Transcripta se	1.1	2.2
10X DTT (0.1M)*	0	1.1
Total volume per pool	5.5	7.7

^{*} Included with ProtoScript II Reverse Transcriptase reagent.

$\Box 6$	Invert	to	mix.
----------	--------	----	------

_9	Add	the	volume	for	your	plate:
----	-----	-----	--------	-----	------	--------

- ▶ Add 5 µl to the CDP1 plate.
- ▶ Add 7 µl to the CDP plate.
- \Box 10 Shake at 1600 rpm for 20 seconds.
- \Box 11 Centrifuge at 280 × g for 1 minute.
- □ 12 Place on the thermal cycler and run the CDNASYN1 or CDNASYN2 program.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at 2°C to 8°C for up to 7 days. Alternatively, leave on the thermal cycler overnight.

Hybridize Oligo Pool

□1 Combine the following volumes in a 1.7 ml microcentrifuge tube. Multiply each volume by the number of reactions being prepared.

Reagent	Volume
	(µl)
TOP	5.5
Additional TOP or TE buffer	5.5
Total volume per reaction	11

- 2 Vortex for 5 seconds.
- \Box 3 Centrifuge at 600 × g for 5 seconds.
- ☐ 4 Distribute into an 8-tube strip.
- \Box 5 Add 10 µl to the CDP or CDP1 plate.
- \Box 6 Shake at 1600 rpm for 20 seconds.
- \Box 7 Incubate at room temperature for 1 minute.
- \square 8 Vortex OB1 for 5 seconds.
- \square 9 Add 30 µl OB1 to the CDP or CDP1 plate.
- \Box 10 Shake at 1600 rpm for 1 minute.
- □11 Place on the thermal cycler and run the ANNEAL program.
- \Box 12 Centrifuge briefly.

 $[\]Box$ 7 Centrifuge at 600 × g for 5 seconds.

 $[\]square 8$ Distribute evenly into an 8-tube strip.

TruSeq Targeted RNA Expression Checklist

For Research Use Only. Not for use in diagnostic procedures.

Wash, Extend, and Ligate Bound Oligos

$\Box 1$	Transfer all supernatant to the HYP plate.
$\square 2$	Place on a magnetic stand until liquid is clear.
$\square 3$	Remove and discard all of the supernatant.
$\Box 4$	*
$\Box 5$	Add 100 µl AM1 to each well.
□6	Shake at 1800 rpm for 2 minutes.
$\Box 7$	Centrifuge at 280 × g for 5 seconds.
$\square 8$	
	liquid is clear.
<u>9</u>	Remove and discard all supernatant.
$\Box 10$	Move from the magnetic stand to a bench.
$\Box 11$	Add 175 μl UB1.
$\Box 12$	Shake at 1800 rpm for 2 minutes.
$\Box 13$	Centrifuge at 280 × g for 5 seconds.
$\Box 14$	Unseal and place on a magnetic stand until
	liquid is clear.
$\Box 15$	Invert ELM4.
$\Box 16$	Remove and discard all supernatant.
$\Box 17$	Move from the magnetic stand to a bench.
$\Box 18$	Add 40 of ELM4.
□19	Shake at 1800 rpm for 2 minutes.
$\square 20$	Centrifuge at 280 × g for 5 seconds.
$\square 21$	Place on the 37°C preheated microheating system
	and incubate for 45 minutes.
\square 22	Remove the adhesive seal from the plate.
$\square 23$	Unseal and place on a magnetic stand until
	liquid is clear.
$\square 24$	Remove and discard all supernatant.
$\square 25$	Add 50 µl of UB1.

Amplify Libraries

$\Box 1$	Arrange Index 1 (i7) adapters in columns 1–12.
$\square 2$	Arrange Index 2 (i5) adapters in rows A-H.
$\square 3$	Place the plate on the TruSeq Index Plate Fixture.
$\Box 4$	Add 4 µl of each Index 1 adapter down each
	column.
$\Box 5$	Add 4 µl of each Index 2 adapter across each
	row.
$\Box 6$	Remove and discard all supernatant from the
	HYP plate.
$\Box 7$	Remove from the magnetic stand.
$\square 8$	Add 22.5 µl diluted HP3.
<u>9</u>	Shake at 1800 rpm for 30 seconds.
$\Box 10$	1
_	minutes.
$\Box 11$	Create the amplification mix:
	▶ 96 libraries — Add 56 µl TDP1 to 2.8 ml of
	PMM2.
	48 libraries —Combine 28 μl TDP1 and 1.4 ml
	PMM2 in a 1.7 ml microcentrifuge tube.
	16 libraries — Combine 9.2 μl TDP1 and 460 μl
□12	PMM2 in a 1.7 ml microcentrifuge tube. Invert to mix.
	Add 22 µl to the IAP plate. Unseal the HYP plate.
	Place on a magnetic stand until liquid is clear.
	Transfer 20 µl supernatant from the HYP plate to
	the IAP plate.
□17	Shake at 1600 rpm for 30 seconds.
	Centrifuge at 280 × g for 1 minute.
□19	Place on the thermal cycler and run the program.
	FE STOPPING POINT
	you are stopping, seal the plate and store at
23	C to 8°C for up to 2 days. Alternatively, leave on

Clean Up Libraries

$\Box 1$	Add 85 µl AMPure XP Beads to the CLP plate.
$\square 2$	Centrifuge the IAP plate at 280 × g for 1 minut
$\square 3$	Unseal the IAP plate.
$\Box 4$	Transfer all supernatant to the CLP plate.
□ 5	Shake at 1800 rpm for 2 minutes.
□6	
$\Box 7$	
$\square 8$	Unseal and place on a magnetic stand until
	liquid is clear.
<u>9</u>	Remove and discard 135 µl supernatant.
$\Box 10$	Wash 2 times with 200 µl 80% EtOH.
$\Box 11$	Air dry on the magnetic stand for 15 minutes.
$\Box 12$	Remove from the magnetic stand.
$\Box 13$	Add 15 μl RSB.
	Shake at 1800 rpm for 2 minutes.
$\square 15$	Centrifuge at 280 × g for 5 seconds.
$\Box 16$	Return RSB to 2°C to 8°C storage.
$\Box 17$	Incubate the plate at room temperature for 2 minutes.
□18	Unseal and place on a magnetic stand until liquid is clear.
□19	Transfer 12.5 µl supernatant to the LNP plate.
SA	AFE STOPPING POINT
If	you are stopping, seal the plate and store at
	5°C to -15°C for up to 7 days.

the thermal cycler overnight.

Pool and Quantify Libraries

- \Box 1 Transfer 5 µl from the LNP plate to a 2 ml microcentrifuge tube.
- \square 2 Vortex for 5 seconds.
- \Box 3 Centrifuge at 600 × g for 5 seconds.
- Load 1 μl pooled library onto the Standard Sensitivity NGS Fragment Analysis Kit or DNA 1000 Kit.
- \Box 5 Determine the concentration of the pooled library.
- \Box 6 Select the **Region Analysis** tab.
- □7 Drag the blue region lines to capture the 100–300 bp region.
- \square 8 Dilute each pooled library to 4 nM using RSB.
- ☐9 Denature and dilute the 4 nM library to the concentration for the sequencing instrument you are using. See the denature and dilute guide for your instrument.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25 °C to -15 °C.

Acronyms

Acronym	Definition
ACD1	Amplicon Control DNA 1
ACP1	Amplicon Control Oligo Pool 1
TSO	TruSight Oligos
CLP	Clean-up Plate
EBT	Elution Buffer with Tris
ELM4	Extension Ligation Mix 4
FPU	Filter Plate Unit
HT1	Hybridization Buffer
НҮР	Hybridization Plate
IAP	Index Amplification Plate
LNA1	Library Normalization Additives 1
LNB1	Library Normalization Beads 1
LNP	Library Normalization Plate
LNS2	Library Normalization Storage Buffer 2
LNW1	Library Normalization Wash 1
OHS2	Oligo Hybridization for Sequencing Reagent 2
PAL	Pooled Amplicon Library