TruSight Oncology Comprehensive (UE)

Instrucciones de uso

PARA USO DIAGNÓSTICO IN VITRO. SOLO PARA EXPORTACIÓN.

Uso previsto

TruSight Oncology Comprehensive (UE) es una prueba diagnóstica *in vitro* que usa la secuenciación de nueva generación selectiva para detectar variantes en 517 genes mediante ácidos nucleicos extraídos de muestras de tejido tumoral fijado en formol e incluido en parafina (FFPE) de pacientes con cáncer que presentan neoplasias malignas sólidas con el instrumento Illumina[®] NextSeq[™] 550Dx. La prueba se puede usar para detectar variantes de nucleótido único, variantes de nucleótidos múltiples, inserciones, deleciones y amplificaciones génicas a partir de ADN y para detectar fusiones génicas y variantes alternativas de corte y empalme a partir de ARN. Con la prueba también se obtiene una puntuación de carga mutacional del tumor (TMB) y el estado de la inestabilidad de microsatélites (MSI).

La prueba está concebida como prueba diagnóstica acompañante para identificar pacientes con cáncer que puedan someterse al tratamiento selectivo citado en la Tabla 1, según el etiquetado del producto terapéutico aprobado. Además, la prueba está concebida para proporcionar información sobre la creación de perfiles tumorales para su uso por parte de profesionales sanitarios cualificados de acuerdo con las directrices profesionales y no es concluyente ni prescribe el uso autorizado recogido en la ficha técnica de ningún producto terapéutico concreto.

Tabla 1 Indicación de prueba diagnóstica acompañante

Tipo de tumor	Biomarcadores	Tratamiento selectivo
Tumores sólidos	NTRK1, NTRK2 y NTRK3 Fusiones génicas	VITRAKVI® (larotrectinib)

Resumen y explicación del ensayo

Descripción clínica

El cáncer es la principal causa de muerte en el mundo y puede generarse en cualquier tipo de tejido. ¹ Es importante realizar un análisis de la base genética de un tumor para identificar a pacientes que puedan beneficiarse de tratamientos selectivos, así como para desarrollar nuevos métodos de tratamiento. En la generación o en la progresión tumoral participa un gran número de genes; muchos tumores portan diversas variantes que afectan a estos genes y a sus funciones. Estas variantes pueden incluir mutaciones génicas, tales como variantes de nucleótido único (SNV), variantes de nucleótidos múltiples (MNV), inserciones o deleciones, amplificaciones génicas, fusiones génicas y variantes alternativas de corte y empalme. Otra consecuencia de las mutaciones génicas tumorales es la presentación de neoantígenos que producen respuestas inmunológicas a un tumor en concreto. El estado de la mutación de un tumor puede representarse por TMB y MSI, que son firmas genómicas asociadas a la presentación de neoantígenos tumorales.

TruSight Oncology Comprehensive es una prueba de análisis genómico exhaustivo (CGP) de secuenciación de nueva generación (NGS) que evalúa globalmente las variantes genómicas en un amplio perfil de genes relacionados con el cáncer citados en la Tabla 2. El ensayo detecta variantes pequeñas en 517 genes, además de amplificaciones génicas, fusiones y variantes alternativas de corte y empalme como se indica en la Tabla 2. El ensayo proporciona una cobertura de la secuencia de codificación para todos los genes, excepto TERT, donde solo se cubre la región promotora, y evalúa la puntuación de la TMB y el estado de la MSI. Estas regiones objetivo del ensayo incluyen el contenido mencionado por las organizaciones profesionales, como la European Society for Medical Oncology (ESMO) y otras directrices de importancia en EE. UU.² Las publicaciones de consorcios independientes y las investigaciones farmacéuticas en fase avanzada también han influido en el diseño del ensayo TSO Comprehensive.

Consulte la *Lista de bloqueo de TruSight Oncology Comprehensive (n.º de documento 200009524)* disponible en el sitio de asistencia de Illumina para obtener información sobre una lista de regiones que se excluyen de la llamada de variantes. La lista de bloqueo se denomina lista negra en algunos archivos.

En la Tabla 2 se identifican cuatro categorías de tipos de variantes: variantes pequeñas de ADN (S), amplificación génica (A), fusión (F) y variante alternativa de corte y empalme (Sp). Las variantes pequeñas de ADN incluyen SNV, MNV e inserciones y deleciones.

Tabla 2	Perfil de genes	del ensayo de	TSO Compre	hensive (UE)

N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante
1	25	ABL1	S	176	2261	FGFR3	S, F	351	7849	PAX8	S
2	27	ABL2	S	177	2264	FGFR4	S	352	55193	PBRM1	S
3	84142	ABRAXAS1	S	178	2271	FH	S	353	5133	PDCD1	S
4	90	ACVR1	S	179	201163	FLCN	S	354	80380	PDCD1LG2	S
5	91	ACVR1B	S	180	2313	FLI1	S	355	5156	PDGFRA	S

B	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante
8 208 AKT2 S 183 2324 FLT4 S 358 5170 PDPK1 S 9 10000 AKT3 S 184 3169 FOXA1 S 359 5241 PGR S 10 238 ALK S, F 185 668 FOXD1 S 360 84295 PH66 S 11 242 ALOX128 S 186 2308 FOXD1 S 361 8292 PH0X28 S 12 19325 AMRR11 S 188 10818 FRS2 S 363 5288 PH3C2G S 14 22852 AMKRD26 S 189 8880 FUBP1 S 363 5298 PH3C3C S 15 324 APC S 190 2534 FVN S 365 5290 PH3C3C S 16 367 AR S 190 2534	6	25960	ADGRA2	S	181	2321	FLT1	S	356	5159	PDGFRB	S
9	7	207	AKT1	S	182	2322	FLT3	S	357	5163	PDK1	S
10	8	208	AKT2	S	183	2324	FLT4	S	358	5170	PDPK1	S
11	9	10000	AKT3	S	184	3169	FOXA1	S	359	5241	PGR	S
12	10	238	ALK	S, F	185	668	FOXL2	S	360	84295	PHF6	S
13 29123 ANKRD11 S 188 10818 FRS2 S 363 5288 PIK3C26 S 14 22852 ANKRD26 S 189 8880 FUBP1 S 364 5289 PIK3C3 S 15 324 APC S 190 2534 FYN S 365 5290 PIK3CA S 16 367 AR S 191 2559 GABRA6 S 366 5291 PIK3CB S 17 369 ARRFP1 S 193 2624 GATA2 S 366 5294 PIK3CB S 18 10139 ARRFP1 S 193 2624 GATA2 S 366 5294 PIK3CB S 19 8289 ARID1A S 199 2626 GATA4 S 370 5296 PIK3R1 S 21 196528 ARID2 S 193	11	242	ALOX12B	S	186	2308	FOXO1	S	361	8929	PHOX2B	S
14 22852 ANKRD26 S 189 8880 FUBP1 S 364 5289 PIK3C3 S 15 324 APC S 190 2534 FYN S 365 5290 PIK3CA S 16 367 AR S 191 2559 GABRA6 S 366 5291 PIK3CB S 17 369 ARAF S 192 2623 GATA1 S 366 5291 PIK3CB S 18 10139 ARRFP1 S 193 2624 GATA2 S 368 5294 PIK3CB S 19 8289 ARIDTA S 194 2625 GATA3 S 369 5295 PIK3R1 S 20 57492 ARIDTB S 195 2626 GATA4 S 370 5296 PIK3R2 S 21 196528 ARIDS S 197	12	139285	AMER1	S	187	27086	FOXP1	S	362	5287	PIK3C2B	S
15 324 APC S 190 2534 FYN S 365 5290 PIK3CA S 16 367 AR S 191 2559 GABRA6 S 366 5291 PIK3CB S 17 369 ARAF S 192 2623 GATA1 S 367 5293 PIK3CD S 18 10139 ARFRP1 S 193 2624 GATA2 S 368 5294 PIK3CC S 19 8289 ARID1A S 194 2625 GATA3 S 369 5295 PIK3R1 S 20 57492 ARID1B S 195 2626 GATA4 S 370 5296 PIK3R2 S 21 196528 ARID5B S 197 348654 GENT S 371 5803 PIK3R2 S 21 196528 ARID5B S 197 <t< td=""><td>13</td><td>29123</td><td>ANKRD11</td><td>S</td><td>188</td><td>10818</td><td>FRS2</td><td>S</td><td>363</td><td>5288</td><td>PIK3C2G</td><td>S</td></t<>	13	29123	ANKRD11	S	188	10818	FRS2	S	363	5288	PIK3C2G	S
16 367 AR S 191 2559 GABRA6 S 366 5291 PIK3CB S 17 369 ARAF S 192 2623 GATA1 S 367 5293 PIK3CD S 18 10139 ARFRP1 S 193 2624 GATA2 S 368 5294 PIK3CO S 19 8289 ARIDIA S 194 2625 GATA3 S 369 5295 PIK3R1 S 20 57492 ARID1B S 195 2626 GATA4 S 370 5296 PIK3R2 S 21 196528 ARID5B S 196 2627 GATA6 S 371 8503 PIK3R2 S 21 196528 ARID5B S 197 348654 GEN1 S 371 8503 PIK3R3 S 21 48159 ARID5B S 199	14	22852	ANKRD26	S	189	8880	FUBP1	S	364	5289	PIK3C3	S
17 369	15	324	APC	S	190	2534	FYN	S	365	5290	PIK3CA	S
18 10139 ARFRP1 S 193 2624 GATA2 S 368 5294 PIK3CG S 19 8289 ARID1A S 194 2625 GATA3 S 369 5295 PIK3R1 S 20 57492 ARID1B S 195 2626 GATA4 S 370 5296 PIK3R2 S 21 196528 ARID2 S 196 2627 GATA6 S 371 8503 PIK3R3 S 22 84159 ARID5B S 197 348654 GEN1 S 372 5292 PIM1 S 23 171023 ASXL1 S 198 79018 GID4 S 373 5336 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLCG2 S 25 472 ATM S 200	16	367	AR	S	191	2559	GABRA6	S	366	5291	PIK3CB	S
19 8289 ARID1A S 194 2625 GATA3 S 369 5295 PIK3R1 S 20 57492 ARID1B S 195 2626 GATA4 S 370 5296 PIK3R2 S 21 196528 ARID2 S 196 2627 GATA6 S 371 8503 PIK3R3 S 22 84159 ARID5B S 197 348654 GEN1 S 372 5292 PIM1 S 23 171023 ASXL1 S 198 79018 GID4 S 373 5336 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLCG2 S 25 472 ATM S 200 2767 GNA13 S 376 5366 PMAIP1 S 26 545 ATR S 201 <td< td=""><td>17</td><td>369</td><td>ARAF</td><td>S</td><td>192</td><td>2623</td><td>GATA1</td><td>S</td><td>367</td><td>5293</td><td>PIK3CD</td><td>S</td></td<>	17	369	ARAF	S	192	2623	GATA1	S	367	5293	PIK3CD	S
20 57492 ARID1B S 195 2626 GATA4 S 370 5296 PIK3R2 S 21 196528 ARID2 S 196 2627 GATA6 S 371 8503 PIK3R2 S 22 84159 ARID5B S 197 348654 GEN1 S 372 5292 PIM1 S 23 171023 ASXL1 S 198 79018 GID4 S 373 5336 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLCG2 S 25 472 ATM S 200 2767 GNA13 S 376 5378 PMA11 S 26 5455 ATRX S 202 <td< td=""><td>18</td><td>10139</td><td>ARFRP1</td><td>S</td><td>193</td><td>2624</td><td>GATA2</td><td>S</td><td>368</td><td>5294</td><td>PIK3CG</td><td>S</td></td<>	18	10139	ARFRP1	S	193	2624	GATA2	S	368	5294	PIK3CG	S
21 196528 ARID2 S 196 2627 GATA6 S 371 8503 PIK3R3 S 22 84159 ARID5B S 197 348654 GEN1 S 372 5292 PIM1 S 23 171023 ASXL1 S 198 79018 GID4 S 373 5336 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLK2 S 25 472 ATM S 200 2767 GNA11 S 376 5378 PMAIP1 S 26 545 ATR S 201 10672 GNA13 S 376 5378 PMAIP1 S 26 545 ATR S 202 2776 GNAQ S 377 5395 PMS2 S 27 546 ATRX S 203 2778	19	8289	ARID1A	S	194	2625	GATA3	S	369	5295	PIK3R1	S
22 84159 ARID5B S 197 348654 GEN1 S 372 5292 PIM1 S 23 171023 ASXL1 S 198 79018 GID4 S 373 5336 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLK2 S 25 472 ATM S 200 2767 GNA11 S 375 5366 PMAIP1 S 26 545 ATR S 201 10672 GNA13 S 376 5378 PMS1 S 27 546 ATRX S 202 2776 GNAQ S 377 5395 PMS2 S 28 6790 AURKA S 203 2778 GNAS S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585	20	57492	ARID1B	S	195	2626	GATA4	S	370	5296	PIK3R2	S
23 171023 ASXL1 S 198 79018 GID4 S 373 5336 PLCG2 S 24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLK2 S 25 472 ATM S 200 2767 GNA11 S 375 5366 PMAIP1 S 26 545 ATR S 201 10672 GNA13 S 376 5378 PMS1 S 27 546 ATRX S 202 2776 GNAQ S 377 5395 PMS2 S 28 6790 AURKA S 203 2778 GNAS S 379 5424 POLD1 S 29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585	21	196528	ARID2	S	196	2627	GATA6	S	371	8503	PIK3R3	S
24 55252 ASXL2 S 199 2735 GLI1 S 374 10769 PLK2 S 25 472 ATM S 200 2767 GNA11 S 375 5366 PMAIPI S 26 545 ATR S 201 10672 GNA13 S 376 5378 PMS1 S 27 546 ATRX S 202 2776 GNAQ S 377 5395 PMS2 S 28 6790 AURKA S 203 2778 GNAS S 378 10957 PNRC1 S 29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903	22	84159	ARID5B	S	197	348654	GEN1	S	372	5292	PIM1	S
25 472 ATM S 200 2767 GNA11 S 375 5366 PMAIP1 S 26 545 ATR S 201 10672 GNA13 S 376 5378 PMS1 S 27 546 ATRX S 202 2776 GNAQ S 377 5395 PMS2 S 28 6790 AURKA S 203 2778 GNAS S 378 10957 PNRC1 S 29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXL S,F 207 2913	23	171023	ASXL1	S	198	79018	GID4	S	373	5336	PLCG2	S
26 545 ATR S 201 10672 GNA13 S 376 5378 PMS1 S 27 546 ATRX S 202 2776 GNAQ S 377 5395 PMS2 S 28 6790 AURKA S 203 2778 GNAS S 378 10957 PNRC1 S 29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXI S,F 207 2913	24	55252	ASXL2	S	199	2735	GLI1	S	374	10769	PLK2	S
27 546 ATRX S 202 2776 GNAQ S 377 5395 PMS2 S 28 6790 AURKA S 203 2778 GNAS S 378 10957 PNRC1 S 29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXL S, F 207 2913 GRM3 S 382 8493 PPM1D S 34 8314 BAP1 S 208 2932	25	472	ATM	S	200	2767	GNA11	S	375	5366	PMAIP1	S
28 6790 AURKA S 203 2778 GNAS S 378 10957 PNRC1 S 29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXL S,F 207 2913 GRM3 S 382 8493 PPMID S 33 567 B2M S 208 2932 GSK3B S 383 5518 PPP2R1A S 34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R2A S 35 580 BARD1 S 210 3021	26	545	ATR	S	201	10672	GNA13	S	376	5378	PMS1	S
29 9212 AURKB S 204 2874 GPS2 S 379 5424 POLD1 S 30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXL S, F 207 2913 GRM3 S 382 8493 PPM1D S 33 567 B2M S 208 2932 GSK3B S 383 5518 PPP2R1A S 34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R2A S 35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 <td>27</td> <td>546</td> <td>ATRX</td> <td>S</td> <td>202</td> <td>2776</td> <td>GNAQ</td> <td>S</td> <td>377</td> <td>5395</td> <td>PMS2</td> <td>S</td>	27	546	ATRX	S	202	2776	GNAQ	S	377	5395	PMS2	S
30 8312 AXIN1 S 205 26585 GREM1 S 380 5426 POLE S 31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXL S, F 207 2913 GRM3 S 382 8493 PPM1D S 33 567 B2M S 208 2932 GSK3B S 383 5518 PPP2R1A S 34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R2A S 35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 <td>28</td> <td>6790</td> <td>AURKA</td> <td>S</td> <td>203</td> <td>2778</td> <td>GNAS</td> <td>S</td> <td>378</td> <td>10957</td> <td>PNRC1</td> <td>S</td>	28	6790	AURKA	S	203	2778	GNAS	S	378	10957	PNRC1	S
31 8313 AXIN2 S 206 2903 GRIN2A S 381 5468 PPARG S 32 558 AXL S,F 207 2913 GRM3 S 382 8493 PPM1D S 33 567 B2M S 208 2932 GSK3B S 383 5518 PPP2R1A S 34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R1A S 35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S,F 213 3006	29	9212	AURKB	S	204	2874	GPS2	S	379	5424	POLD1	S
32 558 AXL S, F 207 2913 GRM3 S 382 8493 PPM1D S 33 567 B2M S 208 2932 GSK3B S 383 5518 PPP2R1A S 34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R2A S 35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 301	30	8312	AXIN1	S	205	26585	GREM1	S	380	5426	POLE	S
33 567 B2M S 208 2932 GSK3B S 383 5518 PPP2R1A S 34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R2A S 35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	31	8313	AXIN2	S	206	2903	GRIN2A	S	381	5468	PPARG	S
34 8314 BAP1 S 209 3020 H3F3A S 384 5520 PPP2R2A S 35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3B S 391 5071 PRKN S 41 599 BCL2L2 S 216	32	558	AXL	S, F	207	2913	GRM3	S	382	8493	PPM1D	S
35 580 BARD1 S 210 3021 H3F3B S 385 5537 PPP6C S 36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	33	567	B2M	S	208	2932	GSK3B	S	383	5518	PPP2R1A	S
36 27113 BBC3 S 211 440093 H3F3C S 386 639 PRDM1 S 37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	34	8314	BAP1	S	209	3020	H3F3A	S	384	5520	PPP2R2A	S
37 8915 BCL10 S 212 3082 HGF S 387 80243 PREX2 S 38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	35	580	BARD1	S	210	3021	H3F3B	S	385	5537	PPP6C	S
38 596 BCL2 S, F 213 3006 HIST1H1C S 388 5573 PRKAR1A S 39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	36	27113	BBC3	S	211	440093	H3F3C	S	386	639	PRDM1	S
39 598 BCL2L1 S 214 3017 HIST1H2BD S 389 5584 PRKCI S 40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	37	8915	BCL10	S	212	3082	HGF	S	387	80243	PREX2	S
40 10018 BCL2L11 S 215 8350 HIST1H3A S 390 5591 PRKDC S 41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	38	596	BCL2	S, F	213	3006	HIST1H1C	S	388	5573	PRKAR1A	S
41 599 BCL2L2 S 216 8358 HIST1H3B S 391 5071 PRKN S	39	598	BCL2L1	S	214	3017	HIST1H2BD	S	389	5584	PRKCI	S
	40	10018	BCL2L11	S	215	8350	HIST1H3A	S	390	5591	PRKDC	S
42 604 BCL6 S 217 8352 HIST1H3C S 392 5652 PRSS8 S	41	599	BCL2L2	S	216	8358	HIST1H3B	S	391	5071	PRKN	S
	42	604	BCL6	S	217	8352	HIST1H3C	S	392	5652	PRSS8	S

N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante
43	54880	BCOR	S	218	8351	HIST1H3D	S	393	5727	PTCH1	S
44	63035	BCORL1	S	219	8353	HIST1H3E	S	394	5728	PTEN	S
45	613	BCR	S	220	8968	HIST1H3F	S	395	5781	PTPN11	S
46	330	BIRC3	S	221	8355	HIST1H3G	S	396	5789	PTPRD	S
47	641	BLM	S	222	8357	HIST1H3H	S	397	5802	PTPRS	S
48	657	BMPR1A	S	223	8354	HIST1H3I	S	398	11122	PTPRT	S
49	673	BRAF	S, F	224	8356	HIST1H3J	S	399	9444	QKI	S
50	672	BRCA1	S	225	333932	HIST2H3A	S	400	11021	RAB35	S
51	675	BRCA2	S	226	126961	HIST2H3C	S	401	5879	RAC1	S
52	23476	BRD4	S	227	653604	HIST2H3D	S	402	5885	RAD21	S
53	83990	BRIP1	S	228	8290	HIST3H3	S	403	10111	RAD50	S
54	694	BTG1	S	229	6927	HNF1A	S	404	5888	RAD51	S
55	695	ВТК	S	230	3190	HNRNPK	S	405	5890	RAD51B	S
56	811	CALR	S	231	10481	HOXB13	S	406	5889	RAD51C	S
57	84433	CARD11	S	232	3265	HRAS	S	407	5892	RAD51D	S
58	841	CASP8	S	233	3283	HSD3B1	S	408	5893	RAD52	S
59	865	CBFB	S	234	3320	HSP90AA1	S	409	8438	RAD54L	S
60	867	CBL	S	235	23308	ICOSLG	S	410	5894	RAF1	S, F
61	595	CCND1	S	236	3399	ID3	S	411	5903	RANBP2	S
62	894	CCND2	S	237	3417	IDH1	S	412	5914	RARA	S
63	896	CCND3	S	238	3418	IDH2	S	413	5921	RASA1	S
64	898	CCNE1	S	239	3459	IFNGR1	S	414	5925	RB1	S
65	29126	CD274	S	240	3479	IGF1	S	415	8241	RBM10	S
66	80381	CD276	S	241	3480	IGF1R	S	416	9401	RECQL4	S
67	972	CD74	S	242	3481	IGF2	S	417	5966	REL	S
68	973	CD79A	S	243	9641	IKBKE	S	418	5979	RET	S, F
69	974	CD79B	S	244	10320	IKZF1	S	419	6009	RHEB	S
70	79577	CDC73	S	245	3586	IL10	S	420	387	RHOA	S
71	999	CDH1	S	246	3575	IL7R	S	421	253260	RICTOR	S
72	51755	CDK12	S	247	3623	INHA	S	422	6016	RIT1	S
73	1019	CDK4	S	248	3624	INHBA	S	423	54894	RNF43	S
74	1021	CDK6	S	249	3631	INPP4A	S	424	6098	ROS1	S, F
75	1024	CDK8	S	250	8821	INPP4B	S	425	8986	RPS6KA4	S
76	1026	CDKN1A	S	251	3643	INSR	S	426	6198	RPS6KB1	S
77	1027	CDKN1B	S	252	3660	IRF2	S	427	6199	RPS6KB2	S
78	1029	CDKN2A	S	253	3662	IRF4	S	428	57521	RPTOR	S
79	1030	CDKN2B	S	254	3667	IRS1	S	429	861	RUNX1	S

N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante
80	1031	CDKN2C	S	255	8660	IRS2	S	430	862	RUNX1T1	S
81	1050	CEBPA	S	256	3716	JAK1	S	431	23429	RYBP	S
82	1058	CENPA	S	257	3717	JAK2	S	432	6389	SDHA	S
83	1106	CHD2	S	258	3718	JAK3	S	433	54949	SDHAF2	S
84	1108	CHD4	S	259	3725	JUN	S	434	6390	SDHB	S
85	1111	CHEK1	S	260	7994	KAT6A	S	435	6391	SDHC	S
86	11200	CHEK2	S	261	5927	KDM5A	S	436	6392	SDHD	S
87	23152	CIC	S	262	8242	KDM5C	S	437	26040	SETBP1	S
88	64326	COP1	S	263	7403	KDM6A	S	438	29072	SETD2	S
89	1387	CREBBP	S	264	3791	KDR	S	439	23451	SF3B1	S
90	1399	CRKL	S	265	9817	KEAP1	S	440	10019	SH2B3	S
91	64109	CRLF2	S	266	3792	KEL	S	441	4068	SH2D1A	S
92	1436	CSF1R	S	267	3799	KIF5B	S, F	442	55164	SHQ1	S
93	1441	CSF3R	S	268	3815	KIT	S	443	9353	SLIT2	S
94	1452	CSNK1A1	S	269	9314	KLF4	S	444	84464	SLX4	S
95	10664	CTCF	S	270	89857	KLHL6	S	445	4087	SMAD2	S
96	1493	CTLA4	S	271	4297	KMT2A	S	446	4088	SMAD3	S
97	1495	CTNNA1	S	272	3845	KRAS	S	447	4089	SMAD4	S
98	1499	CTNNB1	S	273	3916	LAMP1	S	448	6597	SMARCA4	S
99	8452	CUL3	S	274	9113	LATS1	S	449	6598	SMARCB1	S
100	1523	CUX1	S	275	26524	LATS2	S	450	6602	SMARCD1	S
101	7852	CXCR4	S	276	4004	LMO1	S	451	8243	SMC1A	S
102	1540	CYLD	S	277	53353	LRP1B	S	452	9126	SMC3	S
103	1616	DAXX	S	278	4067	LYN	S	453	6608	SMO	S
104	54165	DCUN1D1	S	279	8216	LZTR1	S	454	9627	SNCAIP	S
105	4921	DDR2	S	280	9863	MAGI2	S	455	8651	SOCS1	S
106	51428	DDX41	S	281	10892	MALT1	S	456	6663	SOX10	S
107	1665	DHX15	S	282	5604	MAP2K1	S	457	64321	SOX17	S
108	23405	DICER1	S	283	5605	MAP2K2	S	458	6657	SOX2	S
109	22894	DIS3	S	284	6416	MAP2K4	S	459	6662	SOX9	S
110	3337	DNAJB1	S	285	4214	MAP3K1	S	460	23013	SPEN	S
111	1786	DNMT1	S	286	9175	MAP3K13	S	461	8405	SPOP	S
112	1788	DNMT3A	S	287	9020	MAP3K14	S	462	6708	SPTA1	S
113	1789	DNMT3B	S	288	4216	MAP3K4	S	463	6714	SRC	S
114	84444	DOT1L	S	289	5594	MAPK1	s	464	6427	SRSF2	S
115	1871	E2F3	S	290	5595	MAPK3	s	465	10274	STAG1	S
116	8726	EED	S	291	4149	MAX	s	466	10735	STAG2	S

N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante
117	51162	EGFL7	S	292	4170	MCL1	S	467	6774	STAT3	S
118	1956	EGFR	S, F, Sp	293	9656	MDC1	S	468	6775	STAT4	S
119	1964	EIF1AX	S	294	4193	MDM2	S	469	6776	STAT5A	S
120	1974	EIF4A2	S	295	4194	MDM4	S	470	6777	STAT5B	S
121	1977	EIF4E	S	296	9968	MED12	S	471	6794	STK11	S
122	6921	ELOC	S	297	100271849	MEF2B	S	472	83931	STK40	S
123	27436	EML4	S, F	298	4221	MEN1	S	473	51684	SUFU	S
124	56946	EMSY	S	299	4233	MET	S, A, Sp	474	23512	SUZ12	S
125	2033	EP300	S	300	23269	MGA	S	475	6850	SYK	S
126	4072	EPCAM	S	301	4286	MITF	S	476	6872	TAF1	S
127	2042	EPHA3	S	302	4292	MLH1	S	477	6926	TBX3	S
128	2044	EPHA5	S	303	4300	MLLT3	S	478	6929	TCF3	S
129	2045	EPHA7	S	304	4352	MPL	S	479	6934	TCF7L2	S
130	2047	EPHB1	S	305	4361	MRE11	S	480	7012	TERC	S
131	2064	ERBB2	S, A	306	4436	MSH2	S	481	7015	TERT	S
132	2065	ERBB3	S	307	4437	MSH3	S	482	80312	TET1	S
133	2066	ERBB4	S	308	2956	MSH6	S	483	54790	TET2	S
134	2067	ERCC1	S	309	4485	MST1	S	484	7030	TFE3	S
135	2068	ERCC2	S	310	4486	MST1R	S	485	7037	TFRC	S
136	2071	ERCC3	S	311	2475	MTOR	S	486	7046	TGFBR1	S
137	2072	ERCC4	S	312	4595	MUTYH	S	487	7048	TGFBR2	S
138	2073	ERCC5	S	313	4602	MYB	S	488	55654	TMEM127	S
139	2078	ERG	S, F	314	4609	MYC	S	489	7113	TMPRSS2	S, F
140	54206	ERRFI1	S	315	4610	MYCL	S	490	7128	TNFAIP3	S
141	2099	ESR1	S, F	316	4613	MYCN	S	491	8764	TNFRSF14	S
142	2113	ETS1	S	317	4615	MYD88	S	492	7150	TOP1	S
143	2115	ETV1	S, F	318	4654	MYOD1	S	493	7153	TOP2A	S
144	2118	ETV4	S, F	319	4665	NAB2	S	494	7157	TP53	S
145	2119	ETV5	S	320	4683	NBN	S	495	8626	TP63	S
146	2120	ETV6	S	321	8202	NCOA3	S	496	7186	TRAF2	S
147	2130	EWSR1	S	322	9611	NCOR1	S	497	84231	TRAF7	S
148	2146	EZH2	S	323	257194	NEGR1	S	498	7248	TSC1	S
149	54855	FAM46C	S	324	4763	NF1	S	499	7249	TSC2	S
150	2175	FANCA	S	325	4771	NF2	S	500	7253	TSHR	S
151	2176	FANCC	S	326	4780	NFE2L2	S	501	7307	U2AF1	S
152	2177	FANCD2	S	327	4792	NFKBIA	S	502	7422	VEGFA	S
153	2178	FANCE	S	328	7080	NKX2-1	S	503	7428	VHL	S

N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante	N.º	ID de Entrez	Gen	Tipo de variante
154	2188	FANCF	S	329	4824	NKX3-1	S	504	79679	VTCN1	S
155	2189	FANCG	S	330	4851	NOTCH1	S	505	8838	WISP3	S
156	55215	FANCI	S	331	4853	NOTCH2	S	506	7490	WT1	S
157	55120	FANCL	S	332	4854	NOTCH3	S	507	331	XIAP	S
158	355	FAS	S	333	4855	NOTCH4	S	508	7514	XPO1	S
159	2195	FAT1	S	334	4869	NPM1	S	509	7516	XRCC2	S
160	55294	FBXW7	S	335	4893	NRAS	S	510	10413	YAP1	S
161	2246	FGF1	S	336	3084	NRG1	S, F	511	7525	YES1	S
162	2255	FGF10	S	337	64324	NSD1	S	512	57621	ZBTB2	S
163	2259	FGF14	S	338	4914	NTRK1	S, F	513	51341	ZBTB7A	S
164	9965	FGF19	S	339	4915	NTRK2	S, F	514	463	ZFHX3	S
165	2247	FGF2	S	340	4916	NTRK3	S, F	515	7764	ZNF217	S
166	8074	FGF23	S	341	9688	NUP93	S	516	80139	ZNF703	S
167	2248	FGF3	S	342	256646	NUTM1	S	517	8233	ZRSR2	S
168	2249	FGF4	S	343	5058	PAK1	S	N/A	N/A	N/A	N/A
169	2250	FGF5	S	344	5063	PAK3	S	N/A	N/A	N/A	N/A
170	2251	FGF6	S	345	57144	PAK5	S	N/A	N/A	N/A	N/A
171	2252	FGF7	S	346	79728	PALB2	S	N/A	N/A	N/A	N/A
172	2253	FGF8	S	347	142	PARP1	S	N/A	N/A	N/A	N/A
173	2254	FGF9	S	348	5077	PAX3	S, F	N/A	N/A	N/A	N/A
174	2260	FGFR1	S, F	349	5079	PAX5	S	N/A	N/A	N/A	N/A
175	2263	FGFR2	S, F	350	5081	PAX7	S	N/A	N/A	N/A	N/A

Principios del procedimiento

El ensayo de TSO Comprehensive (UE) es una prueba distribuida que se realiza usando ácido nucleico extraído como material de entrada. El ADN o el ARN extraído del tejido FFPE se usa para preparar genotecas que se enriquecen después para los genes relacionados con el cáncer y que se secuencian en el instrumento Instrumento NextSeg 550Dx.

El ensayo de TSO Comprehensive (UE) implica los siguientes procesos.

- Preparación y enriquecimiento de genotecas: Para ARN, un total de 40 ng se convierte en ADN complementario (ADNc) bicatenario. Para el ADN genómico (ADNg), se fragmentan 40 ng de ADNg en fragmentos pequeños. Unos adaptadores universales de secuenciación se ligan a los fragmentos de ADNc y ADNg. Las secuencias de índices P5 y P7 se incorporan en cada genoteca para permitir la unión de fragmentos de genotecas en la superficie de la celda de flujo durante la secuenciación. Los índices incluyen una secuencia única para identificar cada muestra individual y, en el caso de las genotecas de muestras de ADNg, moléculas individuales con el uso de identificadores moleculares únicos (UMI). A continuación, las genotecas se enriquecen para los genes concretos de interés por medio de un método basado en captura. Las secuencias de sondas biotilinadas que abarcan las regiones génicas de interés del ensayo se hibridan a las genotecas. Las sondas hibridadas a las regiones de interés de la genoteca se aíslan de las regiones de no interés por captura con bolas magnéticas de estreptavidina. Las genotecas enriquecidas de regiones de interés se lavan y se amplifican. A continuación, se normaliza la cantidad de cada genoteca enriquecida por medio de un método basado en bolas para garantizar una representación equivalente en las genotecas agrupadas para la secuenciación.
- Secuenciación y análisis primario: Las genotecas enriquecidas normalizadas se agrupan en una celda de flujo y, a continuación, se secuencian mediante la química de secuenciación por síntesis (SBS) del NextSeq 550Dx. El proceso químico de SBS utiliza un método basado en terminadores reversibles para detectar bases de desoxinucleótido trifosfato (dNTP) único marcadas con fluorescencia a medida que se incorporan a las cadenas de ADN en crecimiento. Durante cada ciclo de secuenciación, se añade un dNTP único a la cadena de ácido nucleico. La etiqueta dNTP sirve como terminador para la polimerización. Tras cada incorporación de dNTP, el fluoróforo se fotografía y digitaliza para identificar la base y, a continuación, se desbloquea para permitir la incorporación del nucleótido siguiente. Cuatro dNTP (A, G, T y C) unidos a terminadores reversibles están presentes como moléculas únicas e independientes. Como resultado, la competencia natural minimiza la tendencia a la incorporación. Durante el análisis principal, las llamadas de bases se realizan directamente a partir de las medidas de intensidad de la señal durante cada ciclo de secuenciación, lo que da como resultado una secuenciación base a base. Se asigna una puntuación de calidad a cada llamada de bases.
- Análisis secundario: El Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE)
 está integrado en el instrumento NextSeq 550Dx como parte del software Local Run Manager para facilitar
 la configuración de experimentos con TSO Comprehensive (UE) y poder realizar el análisis secundario de
 los resultados de secuenciación. El análisis secundario incluye la validación del procesamiento y el control
 de calidad de los experimentos, seguida del demultiplexado, la generación de archivos FASTQ, la alineación

y la llamada de variantes. El demultiplexado separa datos de las genotecas agrupadas en función de los índices de secuencia únicos que se añadieron durante el procedimiento de preparación de genotecas. Se generan archivos intermedios FASTQ, que contienen las lecturas de secuenciación de cada muestra y las puntuaciones de calidad, excepto las lecturas de los grupos que no hayan superado el filtro. A continuación, las lecturas de secuenciación se alinean con un genoma de referencia para identificar una relación entre las secuencias y se les asigna una puntuación según las regiones de similitud. Las lecturas alineadas se escriben en archivos con formato BAM. El software del ensayo usa algoritmos independientes para las genotecas generadas a partir de muestras de ADN o ARN para llamar variantes pequeñas de ADN, amplificaciones génicas, TMB y MSI para muestras de ADN, así como fusiones y variantes alternativas de corte y empalme para muestras de ARN. El módulo del software de análisis genera múltiples resultados, que incluyen criterios de medición de secuenciación y archivos en formato VCF. Los archivos VCF contienen información sobre las variantes que se encuentran en posiciones específicas de un genoma de referencia. Los criterios de medición de secuenciación y los archivos de salida individuales se generan para cada muestra. Consulte el Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661) para obtener información más detallada sobre los análisis secundarios y terciarios.

• Análisis terciario: El análisis terciario, realizado por el Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE), está compuesto por cálculos de TMB y MSI, llamadas de pruebas diagnósticas acompañantes, creación de perfiles tumorales de variantes en dos niveles de importancia clínica usando una base de conocimientos (KB) y el tipo de tejido y generación de informes de resultados. La creación de perfiles tumorales también se puede denominar análisis genómico exhaustivo. Los resultados de variantes interpretados, así como los resultados del biomarcador de TMB y MSI, aparecen resumidos en el informe de resultados de TSO Comprehensive (UE).

Limitaciones del procedimiento

Solo para uso diagnóstico in vitro.

- Para un uso exclusivo bajo prescripción. La prueba se debe usar de acuerdo con las normas del laboratorio clínico.
- Los hallazgos genómicos enumerados en la Tabla 2 del uso previsto no son prescriptivos ni concluyentes para el uso autorizado recogido en la ficha técnica de ningún producto terapéutico concreto.
- Para las variantes enumeradas en el informe de resultados de TSO Comprehensive (UE) bajo Hallazgos genómicos con indicio de importancia clínica y Hallazgos genómicos con posible importancia clínica, no se ha realizado la validación clínica.
- Las decisiones sobre la atención y el tratamiento del paciente se deben basar en la opinión cualificada independiente del médico que lo trate, teniendo en cuenta toda la información aplicable sobre el estado del paciente, como los antecedentes de este y su familia, las exploraciones físicas, la información de otras pruebas diagnósticas y las preferencias del paciente, de acuerdo con la norma de atención en una comunidad determinada.

- La calidad de la muestra FFPE es muy variable. Las muestras que no se sometieron a los procedimientos de fijación habituales podrían no generar ácidos nucleicos extraídos que cumplan con los requisitos de control de calidad del ensayo (*Control de calidad*, en la página 79). Los bloques FFPE que se han almacenado durante más de cinco años han demostrado una menor validez.
- No se ha evaluado el rendimiento de TSO Comprehensive (UE) en muestras obtenidas de pacientes que han recibido un trasplante de órganos o tejidos.
- En genomas muy reordenados con deleciones y pérdida de heterocigosidad, el software TSO Comprehensive (UE) puede clasificar erróneamente una muestra de ADN como contaminada (CONTAMINATION_SCORE >3106 y valor de p >0,049).
- Un resultado negativo no permite descartar la presencia de una mutación por debajo de los límites de detección (LoD) del ensayo.
- La sensibilidad para la detección de variantes pequeñas de ADN se puede ver afectada por:
 - El contexto genómico de baja complejidad
 - El aumento de la longitud de las variantes
- Las puntuaciones de TMB pueden ser inexactas en los siguientes contextos:
 - A medida que el contenido tumoral alcanza niveles en los que convergen las frecuencias alélicas de variantes (VAF) germinales y somáticas.
 - En poblaciones poco representadas en las bases de datos públicas.
- La sensibilidad para la detección de fusiones se puede ver afectada:
 - Por la baja complejidad de la genoteca que da lugar a una disminución de las lecturas de apoyo debido a desviaciones en el flujo de trabajo del ensayo (por ejemplo, siga los pasos de mezcla de Desnaturalización e hibridación de ARN, en la página 42).
 - Cuando un solo gen abarca ambos puntos de ruptura.
 - En los casos en los que varios puntos de ruptura de fusiones están muy cerca unos de otros con uno o varios pares; los múltiples puntos de ruptura y los pares se podrían notificar como un solo punto de ruptura y par.
 - Por una pequeña mediana de los tamaños de los insertos; se requiere una mediana de tamaño de los insertos mínima de 80 pb, pero la sensibilidad disminuye en el intervalo de 80-100 pb.
 - Por la baja complejidad de la secuencia o el contexto genómico homólogo alrededor de los puntos de ruptura de la fusión.
- La resolución de los genes implicados en una fusión puede verse afectada cuando los puntos de ruptura de la fusión se producen en regiones genómicas que contienen genes superpuestos. El ensayo informará de todos los genes, delimitados por punto y coma, si varios genes se superponen a un punto de ruptura.
- La cobertura incoherente en la región del promotor de TERT puede dar lugar a un resultado nulo debido a la baja profundidad.

- Los errores de anotación o de KB pueden causar un resultado de positivo falso o negativo falso, incluida la inclusión de una variante en el nivel incorrecto (entre los Hallazgos genómicos con indicios de importancia clínica y los Hallazgos genómicos con posible importancia clínica), o la información de anotación en el informe podría ser incorrecta. La posibilidad de error tiene tres orígenes:
 - Anotación de variantes de TSO Comprehensive (UE). Hay una tasa de error de aproximadamente el 0,0027 %, basada en un análisis de 2 448 350 variantes de COSMIC v92, por lo que hay una baja posibilidad de error.
 - El error de la KB se debe al proceso de selección y clasificación.
 - La relevancia del contenido de la KB cambia con el paso del tiempo. El informe reflejará los conocimientos en el momento en el que se seleccionó la versión de KB.
 - Las variantes informadas en los resultados de CDx no se ven afectadas por la anotación o los errores de la KB.
- TSO Comprehensive (UE) se ha diseñado para informar de variantes somáticas cuando se informa de variantes con pruebas de importancia clínica o variantes con posible importancia clínica. Al tratarse de una prueba basada únicamente en el tumor, la notificación de variantes germinales (hereditarias) es posible, aunque no intencionada. TSO Comprehensive (UE) usa una KB para informar de variantes sin anotar de forma explícita si son de origen germinal o somático.
- La KB solo incluye asociaciones con el tratamiento, el diagnóstico y el pronóstico que son relevantes para las variantes presentes en una neoplasia maligna sólida determinada. Las asociaciones de susceptibilidad o riesgo de cáncer no se incluyen en la KB.

Componentes del producto

La prueba TruSight Oncology Comprehensive (UE) consta de los componentes siguientes:

- Kit TruSight Oncology Comprehensive (UE) (n.º de catálogo de Illumina 20063092): El kit incluye reactivos con suficiente volumen como para generar 24 genotecas de ADN y 24 genotecas de ARN con controles, que incluyen muestras de pacientes y controles. Los controles se venden por separado (consulte *Reactivos necesarios no suministrados*, en la página 18).
- Base de conocimiento: Actualizada periódicamente y disponible para su descarga en el portal Lighthouse de Illumina.
- Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE) (n.º de catálogo de Illumina 20051843*), que incluye los siguientes componentes y admite la creación de perfiles tumorales y NTRK:
 - Claims Packages TSO Comprehensive (UE) v2.1.0 (n.º de referencia 20079589)
 - TSO Comprehensive (UE) v2.3.6 Software Suite (n.º de referencia 20079588)
 - TSO Comprehensive (UE) v2.3.6 USB Kit (n.º de referencia 20079591)

- Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE) (n.º de catálogo de Illumina 20051843*), que incluye los siguientes componentes y admite la creación de perfiles tumorales y NTRK:
 - Claims Packages TSO Comprehensive (UE) v2.0.0 (n.º de referencia 20051760)
 - TSO Comprehensive (UE) v2.3.5 Software Suite (n.º de referencia 20075244)
 - TSO Comprehensive (UE) v2.3.5 USB Kit (n.º de referencia 20075239)
 - * Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE): Un representante del servicio técnico de Illumina instala la versión adecuada del Módulo de análisis de TSO Comprehensive (UE) en el Local Run Manager Instrumento NextSeq 550Dx. Consulte Tabla 3 para obtener la versión de software de la Guía de flujo de trabajo y del módulo de análisis.

Tabla 3 Guía de flujo de trabajo para la versión de software del módulo de análisis de TSO Comprehensive

Guía de flujo de trabajo	Tejido	Versión de software de TSO Comprehensive
200008661	FFPE	v2.3.5 o v2.3.6

Reactivos

Reactivos suministrados

Los siguientes reactivos se proporcionan con el kit de ensayo de TSO Comprehensive (UE).

TruSight Oncology Comp RNA Library Prep, n.º de referencia 20031127

Reactivo	Número de referencia	Cantidad	Volumen	Principios activos	Temperatura de almacenamiento
First Strand Synthesis Mix (FSM)	20031431	1	260 µl	Solución acuosa tamponada con sales y nucleótidos	Entre –25 °C y –15 °C
Second Strand Mix (SSM)	20031432	1	720 µl	Solución acuosa tamponada con sales, ADN polimerasa, ribonucleasa H y nucleótidos	Entre –25 °C y –15 °C
Elution Primer Frag Mix (EPH3)	20031433	1	250 μΙ	Solución acuosa tamponada con sales y hexámeros aleatorios	Entre -25 °C y -15 °C
Reverse Transcriptase (RVT)	20031434	1	70 µl	Solución acuosa tamponada con transcriptasa inversa	Entre -25 °C y -15 °C

TruSight Oncology Comp Library Prep (Freeze), n.º de referencia 20031118

Reactivo	Número de referencia	Cantidad	Volumen	Principios activos	Temperatura de almacenamiento
End Repair A-tailing A (ERA1-A)	20031435	2	85 µl	Solución acuosa tamponada con ADN polimerasa T4 y polinucleótido quinasa	Entre –25°C y -15°C
End Repair A-tailing B (ERA1-B)	20031436	2	210 µl	Solución acuosa tamponada con sales y nucleótidos	Entre -25 °C y -15 °C
Adapter Ligation Buffer 1 (ALB1)	20031437	2	1,73 ml	Solución acuosa tamponada con sales	Entre –25 °C y -15 °C
DNA Ligase 3 (LIG3)	20031438	2	190 µl	Solución acuosa tamponada con ligasa	Entre –25 °C y -15 °C
Short Universal Adapters 1 (SUA1)	20031439	1	290 μΙ	Solución acuosa tamponada con oligonucleótidos de secuenciación universal	Entre –25 °C y –15 °C
UMI Adapters v1 (UMI)	20031496	1	290 μΙ	Solución acuosa tamponada con oligonucleótidos de secuenciación universal	Entre –25 °C y –15 °C
Stop Ligation Buffer (STL)	20031440	2	480 μΙ	Solución acuosa tamponada con sales	Entre –25 °C y -15 °C
Enhanced PCR Mix (EPM)	20031441	2	550 µl	Solución acuosa tamponada con ADN polimerasa y nucleótidos	Entre –25 °C y -15 °C

TruSight Oncology Comp Library Prep (Refrigerate), n.º de referencia 20031119

Reactivo	Número de referencia	Cantidad	Volumen	Principios activos	Temperatura de almacenamiento
Resuspension Buffer (RSB)	20031444	1	12,4 ml	Solución acuosa tamponada con sales	Entre 2 °C y 8 °C
Sample Purification Beads (SPB)	20031442	2	6,11 ml	Solución acuosa con bolas magnéticas	Entre 2 °C y 8 °C
TE Buffer (TEB)	20013443	1	10 ml	Solución de Tris EDTA	Entre 2 °C y 8 °C

TruSight Oncology Comp CP Index Primers, n.º de referencia 20031120

Principios activos: solución acuosa tamponada con cebadores de oligonucleótido con códigos de barras individuales.

Nota Use los cebadores de índice único (UPxx) para muestras de ARN o ADN.

Cebador de índice	Número de referencia	Cantidad	Volumen	Índice i7	Secuencia i7	Índice i5	Secuencia i5	Temperatura de almacenamiento
UP01	20031445	1	24 µl	D702	TCCGGAGA	D503	AGGATAGG	Entre –25 °C y –15 °C
UP02	20031446	1	24 µl	D707	CTGAAGCT	D504	TCAGAGCC	Entre –25 °C y –15 °C
UP03	20031447	1	24 µl	D717	CGTAGCTC	D509	CATCCGAA	Entre –25 °C y –15 °C
UP04	20031448	1	24 µl	D706	GAATTCGT	D510	TTATGAGT	Entre –25 °C y –15 °C
UP05	20031449	1	24 µl	D712	AGCGATAG	D513	ACGAATAA	Entre –25 °C y –15 °C
UP06	20031450	1	24 µl	D724	GCGATTAA	D515	GATCTGCT	Entre –25 °C y –15 °C
UP07	20031451	1	24 µl	D705	ATTCAGAA	D501	AGGCTATA	Entre -25 °C y -15 °C
UP08	20031452	1	24 µl	D713	GAATAATC	D502	GCCTCTAT	Entre -25 °C y -15 °C
UP09	20031453	1	24 µl	D715	TTAATCAG	D505	CTTCGCCT	Entre –25 °C y –15 °C
UP10	20031454	1	24 µl	D703	CGCTCATT	D506	TAAGATTA	Entre –25 °C y –15 °C
UP11	20031455	1	24 µl	D710	TCCGCGAA	D517	AGTAAGTA	Entre –25 °C y –15 °C
UP12	20031456	1	24 µl	D701	ATTACTCG	D518	GACTTCCT	Entre -25 °C y -15 °C
UP13	20031457	1	24 µl	D716	ACTGCTTA	D511	AGAGGCGC	Entre –25 °C y –15 °C
UP14	20031458	1	24 µl	D714	ATGCGGCT	D512	TAGCCGCG	Entre -25 °C y -15 °C
UP15	20031459	1	24 µl	D718	GCCTCTCT	D514	TTCGTAGG	Entre -25 °C y -15 °C
UP16	20031460	1	24 µl	D719	GCCGTAGG	D516	CGCTCCGC	Entre -25 °C y -15 °C

TruSight Oncology Comp CP Index Primers, n.º de referencia 20031126

Principios activos: solución acuosa tamponada con cebadores de oligonucleótido con códigos de barras individuales.

PRECAUCIÓN

Use los cebadores de índice combinatorios (CPxx) solamente para las muestras de ADN (flujo de trabajo FFPE).

Cebador de índice	Número de referencia	Cantidad	Volumen	Índice i7	Secuencia	Índice i5	Secuencia	Temperatura de almacenamiento
CP01	20031461	1	20 µl	D721	CATCGAGG	D507	ACGTCCTG	Entre -25 °C y -15 °C
CP02	20031462	1	20 µl	D723	CTCGACTG	D508	GTCAGTAC	Entre -25 °C y -15 °C
CP03	20031463	1	20 µl	D709	CGGCTATG	D519	CCGTCGCC	Entre -25 °C y -15 °C
CP04	20031464	1	20 μΙ	D711	TCTCGCGC	D520	GTCCGAGG	Entre –25 °C y –15 °C
CP05	20031465	1	20 μΙ	D723	CTCGACTG	D507	ACGTCCTG	Entre –25 °C y –15 °C
CP06	20031466	1	20 μΙ	D709	CGGCTATG	D507	ACGTCCTG	Entre –25 °C y –15 °C
CP07	20031467	1	20 μΙ	D711	TCTCGCGC	D507	ACGTCCTG	Entre –25 °C y –15 °C
CP08	20031468	1	20 µl	D721	CATCGAGG	D508	GTCAGTAC	Entre –25 °C y –15 °C
CP09	20031469	1	20 µl	D709	CGGCTATG	D508	GTCAGTAC	Entre –25 °C y –15 °C
CP10	20031470	1	20 µl	D711	TCTCGCGC	D508	GTCAGTAC	Entre -25 °C y -15 °C
CP11	20031471	1	20 µl	D721	CATCGAGG	D519	CCGTCGCC	Entre -25 °C y -15 °C
CP12	20031472	1	20 µl	D723	CTCGACTG	D519	CCGTCGCC	Entre -25 °C y -15 °C
CP13	20031473	1	20 µl	D711	TCTCGCGC	D519	CCGTCGCC	Entre -25 °C y -15 °C
CP14	20031474	1	20 μΙ	D721	CATCGAGG	D520	GTCCGAGG	Entre –25 °C y –15 °C
CP15	20031475	1	20 µl	D723	CTCGACTG	D520	GTCCGAGG	Entre –25 °C y –15 °C
CP16	20031476	1	20 µl	D709	CGGCTATG	D520	GTCCGAGG	Entre –25 °C y –15 °C

TruSight Oncology Comp Enrichment (Refrigerate), n.º de referencia 20031123

Reactivo	Número de referencia	Cantidad	Volumen	Principios activos	Temperatura de almacenamiento
Target Capture Buffer 1 (TCB1)	20031477	2	870 µl	Solución acuosa tamponada con formamida y sales	Entre 2 °C y 8 °C
Streptavidin Mag Beads (SMB)	20031478	2	7,78 ml	Solución acuosa tamponada con sales y bolas paramagnéticas de fase sólida revestidas de forma covalente con estreptavidina	Entre 2 °C y 8 °C
2N NaOH (HP3)	20031479	2	400 µl	Solución de hidróxido sódico	Entre 2 °C y 8 °C
Elute Target Buffer 2 (ET2)	20031480	2	290 µl	Solución acuosa tamponada	Entre 2 °C y 8 °C
Library Normalization Beads 1(LNB1)	20031481	1	1,04 ml	Solución acuosa tamponada con bolas paramagnéticas de fase sólida	Entre 2 °C y 8 °C
Library Normalization Wash 1(LNW1)	20031482	2	4,8 ml	Solución acuosa tamponada que contiene sales, 2-mercaptoetanol y formamida	Entre 2 °C y 8 °C
Library Normalization Storage Buffer 1 (LNS1)	20031483	2	3,5 ml	Solución acuosa tamponada con sales	Entre 2 °C y 8 °C
Resuspension Buffer (RSB)	20031444	1	12,4 ml	Solución acuosa tamponada con sales	Entre 2 °C y 8 °C
Sample Purification Beads (SPB)	20031442	2	6,11 ml	Solución acuosa con bolas magnéticas	Entre 2 °C y 8 °C

TruSight Oncology Comp Enrichment (Freeze), n.º de referencia 20031121

Reactivo	Número de referencia	Cantidad	Volumen	Principios activos	Temperatura de almacenamiento
Target Capture Additives 1 (TCA1)	20031486	2	521 µl	Solución acuosa tamponada con oligonucleótidos	Entre -25 °C y -15 °C
Enhanced Enrichment Wash (EEW)	20031487	1	50,4 ml	Solución acuosa tamponada con sales	Entre -25 °C y -15 °C
Enrichment Elution 2 (EE2)	20031488	3	1,65 ml	Solución acuosa tamponada con detergente	Entre -25 °C y -15 °C
Enhanced PCR Mix (EPM)	20031441	2	550 µl	Solución acuosa tamponada con ADN polimerasa y nucleótidos	Entre -25 °C y -15 °C
PCR Primer Cocktail 3 (PPC3)	20031490	2	150 µl	Solución acuosa tamponada con cebadores P5 y P7	Entre -25 °C y -15 °C
Library Normalization Additives 1 (LNA1)	20031491	1	4,6 ml	Solución acuosa tamponada con sales, 2-mercaptoetanol y formamida	Entre -25 °C y -15 °C
PhiX Internal Control (PX3 o PhiX)	20031492	1	10 μΙ	Solución acuosa tamponada con ADN genómico PhiX	Entre -25 °C y -15 °C

TruSight Oncology Comp Content Set, n.º de referencia 20031122

Reactivo	Número de referencia	Cantidad	Volumen	Principios activos	Temperatura de almacenamiento
Oncology RNA Probe Pool (OPR1)	20031494	1	290 µl	Grupo de sondas de oligonucleótidos	Entre -25 °C y -15 °C
Oncology DNA Probe Pool 2 (OPD2)	20031495	1	290 µl	Grupo de sondas de oligonucleótidos	Entre -25 °C y -15 °C

Reactivos necesarios no suministrados

Reactivos de preamplificación

- Reactivos de extracción y purificación de ADN y ARN. Consulte Extracción, cuantificación y almacenamiento de ácido nucleico, en la página 24 para conocer los requisitos de los reactivos.
- Reactivos de cuantificación de ADN y ARN. Consulte Extracción, cuantificación y almacenamiento de ácido nucleico, en la página 24 para conocer los requisitos de los reactivos.
- TruSight Oncology DNA Control (n.º de catálogo de Illumina 20065041)
- TruSight Oncology RNA Control (n.º de catálogo de Illumina 20065042)
- Etanol al 100 % (etanol puro), de biología molecular
- Agua sin-ribonucleasa/desoxirribonucleasa

Reactivos de posamplificación

- NextSeq 550Dx High-Output Reagent Kit v2.5 (300 cycles) (n.º de catálogo de Illumina 20028871)
 - NextSeq 550Dx High Output Flow Cell Cartridge v2.5 (300 cycles)
 - NextSeq 550Dx High Output Reagent Cartridge v2 (300 cycles)
 - NextSeq 550Dx Buffer Cartridge v2 (300 cycles)
- Etanol al 100 % (etanol puro), de biología molecular
- Agua sin-ribonucleasa/desoxirribonucleasa

Almacenamiento y manipulación de reactivos

• Las siguientes cajas de reactivos se envían congeladas. Almacenamiento a entre −25 °C y −15 °C.

Caja	Número de referencia	Zona del laboratorio
TruSight Oncology Comp RNA Library Prep	20031127	Preamplificación
TruSight Oncology Comp Library Prep (Freeze)	20031118	Preamplificación
TruSight Oncology Comp UP Index Primers	20031120	Preamplificación
TruSight Oncology Comp UP Index Primers	20031126	Preamplificación
TruSight Oncology Comp Enrichment (Freeze)	20031121	Posamplificación
TruSight Oncology Comp Content Set	20031122	Posamplificación

PRECAUCIÓN

No almacene los reactivos en una unidad de almacenamiento sin congelación ni en los compartimentos de la puerta del refrigerador.

Las siguientes cajas de reactivos se envían en paquetes de gel para mantenerlos a entre 0 °C y 10 °C.
 Almacenamiento a entre 2 °C y 8 °C.

Caja	Número de referencia	Zona del laboratorio
TruSight Oncology Comp Library Prep (Refrigerate)	20031119	Preamplificación
TruSight Oncology Comp Enrichment (Refrigerate)	20031123	Posamplificación

PRECAUCIÓN

No congele las bolas que contengan reactivos (LNB1, SPB y SMB).

- Los cambios en el aspecto físico de los reactivos proporcionados pueden señalar el deterioro de los materiales. Si se producen cambios en el aspecto físico (tales como cambios en el color del reactivo o un aspecto turbio), no use los reactivos.
- Se ha evaluado la estabilidad del ensayo de TSO Comprehensive (UE) y se ha demostrado el rendimiento del kit para un máximo de cuatro usos. Los reactivos son estables si se almacenan a las temperaturas indicadas hasta la fecha de caducidad especificada que se incluye en la etiqueta de la caja.

Materiales y equipo

Materiales y equipo necesarios, no suministrados

Materiales y equipo de preamplificación

Equipo	Proveedor
Ultrasonicador con accesorios asociados Consulte <i>Optimización de ultrasonicadores para fragmentar ADN</i> , en la página 22.	Proveedor de laboratorio general
Ciclador térmico con las especificaciones siguientes: Tapa calefactada con capacidad de ajuste de 30 °C a 100 °C (o apagada si no se alcanzan los 30 °C) Comprende un intervalo de temperatura de 4 °C a 99 °C Precisión de temperatura de ±0,25 °C Compatible con placas de PCR de 96 pocillos, 0,2 ml (polipropileno) Consulte <i>Tasa de incremento del termociclador</i> , en la página 23	Proveedor de laboratorio general
Vórtex	Proveedor de laboratorio general
Estaciones de incubación de micromuestras (2) con espacio para placas MIDI de 96 pocillos (2)	Proveedor de laboratorio general
Microcentrifugado	Proveedor de laboratorio general
Centrifugadora (centrifugadora de placas) con las siguientes capacidades: Centrifugación de microplacas de 96 pocillos Capacidad de 280 × g	Proveedor de laboratorio general
Agitador de placas con las siguientes capacidades: Órbita de 2 mm Agitación a 1200 rpm y 1800 rpm	Proveedor de laboratorio general
Rodillo o cuña de sellado	Proveedor de laboratorio general
Soporte magnético con las especificaciones siguientes: Diseñado para la precipitación/separación con bolas paramagnéticas Imanes en el lateral del soporte, no en la parte inferior Para placas MIDI de 96 pocillos	Proveedor de laboratorio general
Pipetas de precisión Pipetas de canal único o multicanal de 20 µl Pipetas de canal único o multicanal de 200 µl Pipetas de canal único o multicanal de 1000 µl Que cumplan los siguientes requisitos: Se calibran de forma periódica, con una exactitud del 5 %.	Proveedor de laboratorio general
Pipeteador	Proveedor de laboratorio general
Pipetas serológicas de 10 ml	Proveedor de laboratorio general
Sellos adhesivos para placas de 96 pocillos con las siguientes especificaciones: Poliéster desprendible, transparente en términos ópticos Adecuado para placas de PCR con faldón o semifaldón Adhesivo resistente que aguanta varios cambios de temperatura de -40 °C a 110 °C Sin ribonucleasa ni desoxirribonucleasa	Proveedor de laboratorio general
Tubos de microcentrifugado de 1,7 ml, libres de nucleasas	Proveedor de laboratorio general
Depósitos de reactivos libres de nucleasas (PVC, cubeta desechable, 50 ml) (o equivalente)	Proveedor de laboratorio general

Equipo	Proveedor
Tubos cónicos de 15 ml	Proveedor de laboratorio general
Tubos cónicos de 50 ml	Proveedor de laboratorio general
Puntas de pipeta resistentes a los aerosoles de 20 µl	Proveedor de laboratorio general
Puntas de pipeta resistentes a los aerosoles de 200 µl	Proveedor de laboratorio general
Puntas de pipeta resistentes a los aerosoles de 1000 µl	Proveedor de laboratorio general
Placas de almacenamiento de 96 pocillos, 0,8 ml (placas MIDI)	Fisher Scientific, n.º de referencia AB- 0859 o equivalente
Placas de PCR de 96 pocillos, 0,2 ml (polipropileno)	Proveedor de laboratorio general

Materiales y equipo de posamplificación

Equipo	Proveedor
Instrumento NextSeq 550Dx	Illumina, n.º de catálogo 20005715
Centrifugadora (centrifugadora de placas) con las siguientes capacidades: Centrifugación de microplacas de 96 pocillos Capacidad de 280 × g	Proveedor de laboratorio general
Ciclador térmico con las especificaciones siguientes: Tapa calefactada (100 °C) Comprende un intervalo de temperatura de 4 °C a 99 °C Precisión de temperatura de ±0,25 °C Compatible con placas de PCR de 96 pocillos, 0,2 ml (polipropileno) Consulte Tasa de incremento del termociclador, en la página 23	Proveedor de laboratorio general
Vórtex	Proveedor de laboratorio general
Estación de incubación de micromuestras con espacio para placas MIDI de 96 pocillos	Proveedor de laboratorio general
Bloque de calor seco con las especificaciones siguientes: Intervalo de temperatura de 25 °C a 99 °C Precisión de temperatura de ±5 °C Asegúrese de que los tubos de microcentrífuga sean compatibles con el termobloque	Proveedor de laboratorio general
Agitador de placas con las siguientes capacidades:	Proveedor de laboratorio general
Microcentrifugado	Proveedor de laboratorio general
Rodillo o cuña de sellado	Proveedor de laboratorio general
Soporte magnético con las especificaciones siguientes: Diseñado para la precipitación/separación con bolas paramagnéticas Imanes en el lateral del soporte, no en la parte inferior Para placas MIDI de 96 pocillos	Proveedor de laboratorio general
Pipetas de precisión Pipetas de canal único o multicanal de 20 µl Pipetas de canal único o multicanal de 200 µl Pipetas de canal único o multicanal de 1000 µl Que cumplan los siguientes requisitos: Se calibran de forma periódica, con una exactitud del 5 %.	Proveedor de laboratorio general
Pipeteador	Proveedor de laboratorio general
Pipetas serológicas de 10 ml	Proveedor de laboratorio general

Equipo	Proveedor
Sellos adhesivos para placas de 96 pocillos con las siguientes especificaciones: Poliéster desprendible, transparente en términos ópticos Adecuado para placas de PCR con faldón o semifaldón Adhesivo resistente que aguanta varios cambios de temperatura de -40 °C a 110 °C Sin ribonucleasa ni desoxirribonucleasa	Proveedor de laboratorio general
Tubos de microcentrifugado, libres de nucleasas	Proveedor de laboratorio general
Depósitos de reactivos libres de nucleasas (PVC, cubeta desechable, 50 ml) (o equivalente)	Proveedor de laboratorio general
Tubos cónicos de 15 ml	Proveedor de laboratorio general
Tubos cónicos de 50 ml	Proveedor de laboratorio general
Puntas de pipeta resistentes a los aerosoles de 20 µl	Proveedor de laboratorio general
Puntas de pipeta resistentes a los aerosoles de 200 µl	Proveedor de laboratorio general
Puntas de pipeta resistentes a los aerosoles de 1000 µl	Proveedor de laboratorio general
Placas de almacenamiento de 96 pocillos, 0,8 ml (placas MIDI)	Fisher Scientific, n.º de referencia AB- 0859 o equivalente
Placas de PCR de 96 pocillos, 0,2 ml (polipropileno)	Proveedor de laboratorio general

Optimización de ultrasonicadores para fragmentar ADN

La fragmentación o el recorte del ADN influye en el rendimiento del ensayo al determinar la distribución del tamaño de los fragmentos, que a su vez afecta a la cobertura de la secuenciación. Se evaluaron y optimizaron varias configuraciones de ultrasonidos focalizados para el ensayo de TSO Comprehensive (UE) (Tabla 4). El tiempo de recorte se ajustó para maximizar el criterio de medición MEDIAN_EXON_COVERAGE indicado en la sección *Control de calidad*, en la página 79. Los tiempos de recorte (en negrita en la Tabla 4) difirieron entre las configuraciones, al igual que lo hicieron los resultados de MEDIAN_INSERT_SIZE. Las tres configuraciones se analizaron con tubos de 8 tiras; los volúmenes usados se muestran en la Tabla 4.

La optimización de la configuración 3 (transductor de puntos, agua no desgasificada y volumen de baño de agua pequeño) usó la pulsación y tuvo el tiempo de recorte más corto, lo que dio lugar a una distribución del tamaño de los fragmentos ligeramente mayor en comparación con las otras dos configuraciones (MEDIAN_INSERT_SIZE fue aproximadamente de cinco a diez pares de bases mayor). Además, la configuración 3 necesitó una mayor entrada de ADN (50 ng) para lograr una MEDIAN_EXON_COVERAGE similar en relación con las otras dos configuraciones, que usaron la entrada nominal de 40 ng. La configuración 3 presenta más daños o desnaturalización y, por lo tanto, una masa efectiva reducida de moléculas de ADNbc que se pueden usar en la preparación de genotecas.

Centrifugue los tubos de recorte durante el proceso de recuperación para garantizar que se recupere el volumen especificado, ya que cualquier pérdida de material puede afectar negativamente al rendimiento.

Tabla 4 Configuraciones de ultrasonicador focalizado evaluadas

		Configuraci	ón
Parámetro	1	2	3
Transductor	Línea	Punto	Punto
Volumen de baño de agua	51	51	85 ml
Agua desgasificada	Sí	Sí	No
Refrigerador de agua	Sí	Sí	Sí
Temperatura de baño de agua	7 °C	7 °C	12 °C
Potencia incidente máxima (PIP)	450 W	175 W	50 W
% de factor de trabajo	30	10	30
Ciclos por ráfaga	200	200	1000
Pulsación (ráfagas de 10 s)	No	No	Sí
Tiempo de recorte	250 s	280 s	200 s*
Procesamiento de muestras	1-8	1	1
Tamaño del lote	1-96	1-96	1-8
Tamaño de muestra del tubo de vidrio de 8 tiras	130 µl	130 µl	50 µl
Equivalente de entrada de ADN (para la mediana de la cobertura de exones)	40 ng	40 ng	50 ng

^{*} El tiempo de recorte de 200 segundos consiste en ráfagas de 10 segundos con 20 repeticiones.

Tasa de incremento del termociclador

La tasa de incremento del termociclador afecta a los criterios de medición de CC del ensayo, los centros de MSI útiles, la mediana del recuento de grupos por CNV de regiones de interés, la mediana del tamaño de los insertos (ARN), así como las lecturas de apoyo para las variantes alternativas de corte y empalme y las fusiones. Se recomienda la optimización de la tasa de incremento del termociclador. Por ejemplo, un modelo analizado se ajustó pasando de una tasa de incremento predeterminada (y máxima) de 5 °C/s a 3 °C/s para lograr resultados semejantes a otros modelos con tasas de incremento predeterminadas más bajas.

Recopilación, transporte y almacenamiento de muestras

Siga el procedimiento habitual a la hora de recopilar, transportar, almacenar y procesar muestras.

Requisitos de la muestra

Tejido FFPE

El ensayo de TSO Comprehensive (UE) requiere 40 ng de ARN o 40 ng de ADN extraídos del tejido FFPE. Usar tanto el ARN como el ADN proporciona análisis de todos los tipos de variantes reivindicados. El tejido debe fijarse con un fijador de formol adecuado para análisis moleculares; por ejemplo, formol al 10 % neutro tamponado. El tejido no puede descalcificarse. Antes de realizar el ensayo de TSO Comprehensive (UE), un patólogo debe examinar la muestra de tejido para garantizar que es adecuada para esta prueba. Se requiere un mínimo del 20 % de contenido tumoral (por superficie) para detectar mutaciones somáticas conductoras. Se requiere un mínimo del 30 % de contenido tumoral para detectar la MSI elevada. El contenido tumoral para las amplificaciones génicas y las variantes de ARN depende de la extensión de la amplificación o de la expresión de la fusión (consulte *Contenido tumoral*, en la página 95).

Para una probabilidad alta de extraer 40 ng de ARN y 40 ng de ADN de varios tipos de tejidos sólidos, el volumen de tejido recomendado es \geq 1,0 mm³, el equivalente a una superficie de tejido viable acumulado \geq 200 mm² con secciones gruesas de 5 µm o \geq 100 mm² con secciones gruesas de 10 µm. La superficie de tejido acumulado es la suma de la superficie de tejido viable en todas las secciones sometidas a la extracción. Por ejemplo, una superficie de tejido acumulado de 200 mm² puede obtenerse mediante la extracción de cuatro secciones de 5 µm con una superficie de tejido de 50 mm² cada una o cinco secciones de 10 µm con una superficie de tejido de 20 mm² cada una. La necrosis tisular puede reducir la cantidad de rendimiento de ácido nucleico. Para reducir al mínimo la posibilidad de que se generen negativos falsos, el tejido se puede macrodiseccionar para alcanzar un contenido tumoral viable.

Una cantidad elevada de tejido necrótico (≥25%) puede interferir con la capacidad del ensayo de TSO Comprehensive (UE) para detectar amplificaciones génicas y fusiones de ARN.

Extracción, cuantificación y almacenamiento de ácido nucleico

- Extraiga el ARN y el ADN de las muestras de tejido FFPE; para ello, use los kits de extracción disponibles en el mercado. Las diferencias en los kits de extracción pueden afectar al rendimiento. Consulte Evaluación del kit de extracción de ácido nucleico, en la página 86.
- Almacene la reserva de ácido nucleico extraído; para ello, siga las instrucciones del fabricante del kit de extracción.

- Para evitar cambios en la concentración con el tiempo, mida el ADN y el ARN inmediatamente antes de comenzar la preparación de genotecas. Cuantifique el ARN y el ADN con un método de cuantificación fluorométrica que use fluoróforos de unión de ácido nucleico. La concentración de ácido nucleico debe ser la media de al menos tres mediciones.
- El ensayo requiere 40 ng de cada muestra de ARN preparada en agua-sin ribonucleasa/desoxirribonucleasa (no se proporciona), con un volumen final de 8,5 µl (4,7 ng/µl).
- El ensayo requiere 40 ng de cada muestra de ADNg con una concentración de extracción mínima de 3,33 ng/μl. El recorte requiere un volumen final de 52 μl (0,77 ng/μl) con un mínimo de 40 μl de TEB (se proporciona) que se usa como diluyente.

Almacenamiento de genotecas

Almacene genotecas en placas de PCR de unión baja durante un margen de 7 a 30 días, según el tipo de genoteca (consulte la Tabla 5).

Tabla 5 Tiempos de almacenamiento de genotecas

<u>'</u>			
Tipo de genoteca	Placa	Número de días	Temperatura de almacenamiento
ADNc	PCR de PCF	≤7	Entre -25 °C y -15 °C
ADNg fragmentado	PCR de LP	≤7	Entre -25 °C y -15 °C
Enriquecimiento previo	PCR de ALS	≤30	Entre -25 °C y -15 °C
Enriquecimiento posterior	PCR de ELU2	≤7	Entre -25 °C y -15 °C
PCR de enriquecimiento posterior	PCR de PL	≤30	Entre -25 °C y -15 °C
Normalizada	PCR de NL	≤30	Entre -25 °C y -15 °C

Advertencias y precauciones

Seguridad

- 1. Algunos componentes de este ensayo contienen productos químicos potencialmente peligrosos. Evite su inhalación, su ingestión y el contacto con la piel o los ojos, puesto que pueden provocar lesiones. Utilice un equipo de protección, incluidos gafas, guantes y batas de laboratorio adecuados para el riesgo de exposición. Manipule los reactivos usados como residuos químicos y deséchelos de conformidad con las normativas y leyes regionales, nacionales y locales aplicables. Para consultar las hojas de datos de seguridad (SDS), visite support.illumina.com/sds.html.
- 2. Manipule todas las muestras como si fueran infecciosas.
- 3. Utilice las precauciones habituales del laboratorio. No pipetee con la boca. No coma, beba ni fume en las zonas de trabajo designadas. Use guantes desechables y batas de laboratorio para la manipulación de muestras y reactivos del ensayo. Lávese bien las manos tras la manipulación de muestras y reactivos del ensayo.

Laboratorio

- 1. Para evitar que se produzca contaminación, disponga en el laboratorio un flujo de trabajo unidireccional. Las zonas de preamplificación y posamplificación deben contar con equipo y material específicos (por ejemplo, pipetas, puntas de pipeta, vórtex y una centrífuga). Para evitar el arrastre de sondas o del producto de amplificación, evite volver a la zona de preamplificación después de entrar en la zona de posamplificación.
- 2. Realice los pasos de indexación de PCR y enriquecimiento en una zona de posamplificación para evitar el arrastre del producto de amplificación.
- 3. Los procedimientos de preparación de genotecas requieren un entorno libre de ribonucleasa/desoxirribonucleasa. Descontamine a fondo las zonas de trabajo con una solución de limpieza que inhiba la ribonucleasa/desoxirribonucleasa. Use plásticos certificados que estén libres de desoxirribonucleasa, ribonucleasa y ADN genómico humano.
- 4. Para los procedimientos de posamplificación, limpie las superficies de trabajo y el equipo a fondo antes y después de cada procedimiento con una solución nueva de hipoclorito de sodio (NaOCI) al 0,5 %. Deje que la solución entre en contacto con las superficies durante 10 minutos y, a continuación, limpie a fondo con un paño empapado en alcohol etílico al 70 % o alcohol isopropílico.
- 5. Use tubos de microcentrífuga, placas, puntas de pipeta y depósitos libres de nucleasas.
- 6. Use un equipo calibrado durante todo el ensayo. Asegúrese de calibrar el equipo a las velocidades, temperaturas y volúmenes especificados en este protocolo.
- 7. Use pipetas de precisión para garantizar la administración precisa tanto del reactivo como de la muestra. Calibre de forma periódica según las especificaciones del fabricante.
- 8. Use las siguientes directrices a la hora de usar las pipetas multicanal:

- Pipetee un mínimo de ≥2 µl.
- Asegúrese de que las puntas de barrera encajen debidamente y que sean adecuadas para la marca y el modelo de la pipeta multicanal.
- Fije las puntas con un movimiento giratorio para asegurarse de que todas queden fijadas correctamente.
- Aspire en un ángulo de 90°, con niveles de líquido de volumen iguales en todas las puntas.
- Mezcle todos los componentes después de la entrega pipeteando la mezcla de reacción arriba y abajo.
- Después de la dispensación, asegúrese de que el líquido se haya dispensado de cada punta.
- 9. Asegúrese de usar el equipo especificado para el ensayo y de ajustar los programas según se indica.
- 10. Las temperaturas especificadas para el termociclador y la estación de incubación de micromuestras indican la temperatura de reacción, no necesariamente la temperatura ajustada del equipo.

Ensayo

- 1. Evite la contaminación cruzada.
 - Siga las prácticas de laboratorio adecuadas a la hora de manipular muestras y reactivos.
 - Use instrumentos de laboratorio consumibles nuevos y puntas de pipeta nuevas entre las muestras y entre dispensaciones de reactivos.
 - Utilice puntas resistentes a los aerosoles para reducir el riesgo de contaminación cruzada.
 - Use un flujo de trabajo unidireccional cuando pase de zonas de preamplificación a otras de posamplificación.
 - Manipule y abra solamente un cebador de índice a la vez. Tape cada tubo de índice inmediatamente después de su uso. El kit incluye tapas adicionales.
 - Cámbiese de guantes con frecuencia y si estos entran en contacto con los cebadores de índice o con las muestras.
 - Retire los tubos de cebadores de índice sin usar de la zona de trabajo.
 - No vuelva a almacenar los tubos de reactivos después de su uso con una gradilla de tubos, una cubeta o un depósito.
 - Mezcle las muestras con una pipeta y centrifugue la placa cuando se indique.
 - Utilice un agitador de microplacas. No agite las placas en vórtex.
- 2. No intercambie los componentes del ensayo de lotes de kits de reactivos distintos. Los lotes de kits de reactivos están identificados en la etiqueta de la caja del kit de reactivos y en la hoja de lotes maestra.
- 3. Se precisan prácticas de laboratorio adecuadas para evitar que las nucleasas y los productos de PCR contaminen los reactivos, los instrumentos, las muestras y las genotecas. La contaminación de nucleasas y productos de PCR puede dar lugar a resultados imprecisos y poco fiables.

- 4. Para un almacenamiento y un rendimiento del ensayo óptimos, es preciso usar el tipo de placa adecuado. Asegúrese de seguir las indicaciones para la transferencia de placas que se recogen en las *Instrucciones de uso*, en la página 37.
- 5. El incumplimiento de los procedimientos descritos puede provocar resultados erróneos o una reducción considerable de la calidad de las genotecas.
- 6. A menos que se haya especificado un punto de detención de seguridad en las *Instrucciones de uso*, en la página 37, continúe inmediatamente con el siguiente paso.
- 7. Almacene los reactivos o los componentes del ensayo a la temperatura especificada en las zonas de preamplificación y posamplificación designadas.
- 8. No almacene los reactivos en una unidad de almacenamiento sin congelación ni en los compartimentos de la puerta del refrigerador.
- 9. No congele las bolas que contengan reactivos (LNB1, SPB y SMB).
- 10. No use reactivos que se hayan almacenado incorrectamente.
- 11. No se desvíe de los procedimientos de mezcla y manipulación especificados para cada reactivo. Mezclar incorrectamente los reactivos o agitarlos en vórtex de forma excesiva puede provocar resultados erróneos para las muestras.
- 12. Prepare mezclas maestras nuevas y deseche el volumen restante después de su uso.
- 13. Para los pasos de lavado, prepare siempre etanol nuevo al 80 % con agua sin ribonucleasa/desoxirribonucleasa. El etanol puede absorber agua del aire, lo que podría afectar a los resultados. Deseche el etanol al 80 % después de su uso en virtud de la regulación local, estatal o federal.
- 14. Transfiera el volumen especificado de eluido. Transferir una cantidad inferior al volumen especificado de eluido durante los pasos de elución puede afectar a los resultados.
- 15. Use las siguientes directrices para los ultrasonicadores. Asegúrese de seguir las instrucciones del fabricante.
 - Cargue el ADNg en el tubo del ultrasonicador lentamente para evitar que se formen burbujas. Un exceso de burbujas o la formación de cámaras de aire en el tubo de corte puede ocasionar una fragmentación incompleta.
 - Dispense en los tubos de ultrasonicador lentamente y evite que se produzcan salpicaduras.
 - Para impedir el desplazamiento de líquidos y la pérdida de muestra, no inserte la punta de la pipeta en la parte inferior del tubo de ultrasonicador cuando retire el ADN fragmentado.
- 16. No pipetee menos de 2 µl de entrada de muestras.
- 17. No use una cubeta para dispensar reactivos para los pasos que requieran menos de 10 µl de material para añadir a cada pocillo de muestra.
- 18. Para transferir la muestra de ADNg fragmentado de los tubos del ultrasonicador a la placa de preparación de genotecas (LP), use una pipeta P20.
- 19. No combine los adaptadores UMI y SUA1 entre sí.
- 20. Use los adaptadores SUA1 con las muestras de ARN.
- 21. Utilice los adaptadores UMI con las muestras de ADN.

- 22. Asigne cebadores de índices diferentes a cada muestra para identificar de forma única cada genoteca cuando se agrupen para la secuenciación en una única celda de flujo.
- 23. No combine cebadores de índices CPxx y UPxx entre sí en la misma genoteca.
- 24. Las discrepancias entre las muestras y los cebadores de indexación generan informes con resultados incorrectos debido a que no se identifican las muestras positivas. Introduzca los ID de las muestras y asigne los índices en Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE) antes de empezar a preparar las genotecas. Haga un registro de los ID de las muestras, de la indexación y de la orientación del pocillo de la placa para poder consultar esta información durante la preparación de genotecas.
- 25. Para las genotecas obtenidas de las muestras de ARN, use únicamente índices UPxx.
- 26. Para las genotecas obtenidas de las muestras de ADN, use índices UPxx o índices CPxx.
- 27. Secuencie 8 genotecas de ARN y 8 genotecas de ADN por celda de flujo. Consulte *Número de genotecas y selección de índices*, en la página 34.
- 28. Secuencie tres genotecas como mínimo. Siga las directrices que aparecen en *Número de genotecas y selección de índices*, en la página 34.
- 29. A continuación del paso de unión en 1.ª captura de las regiones de interés, en la página 58 y 2.ª captura de las regiones de interés, en la página 62, proceda inmediatamente a realizar el paso de lavado para evitar que se sequen las microesferas de bolas.
- 30. Durante los pasos de lavado, asegúrese de retirar todo el etanol al 80 % de la parte inferior de los pocillos. Los restos de etanol pueden afectar los resultados.
- 31. Para un rendimiento óptimo del ensayo, siga el número de lavados especificados indicados en las *Instrucciones de uso*, en la página 37.
- 32. Durante el procedimiento de *Normalización de las genotecas*, en la página 68, resuspenda completamente la microesfera de bolas de la genoteca para lograr una densidad de grupos uniforme en la celda de flujo.

Notas del procedimiento

- El flujo de trabajo de TSO Comprehensive (UE) se puede realizar de acuerdo con el siguiente programa.
 - Día 1: Síntesis de ADNc de las muestras de ARN, fragmentación de ADN de las muestras de ADNg, preparación de genotecas e inicio de la (primera) hibridación durante la noche.
 - Día 2: Enriquecimiento, normalización de las genotecas enriquecidas y carga de genotecas en el Instrumento NextSeq 550Dx.

Si no es posible realizar el flujo de trabajo de TSO Comprehensive (UE) de acuerdo con este programa, se especifican varios puntos de detención de seguridad a lo largo del protocolo. A menos que se haya especificado un punto de detención de seguridad en el protocolo, continúe inmediatamente con el siguiente paso.

- Las genotecas derivadas de las muestras de ARN y ADN se pueden preparar de forma simultánea en pocillos separados.
- Las tablas de preparación de mezcla maestra incluyen un excedente de volumen para asegurarse de que haya un volumen suficiente para el número de muestras que se están procesando.
- Use agua de grado molecular que esté libre de nucleasas.
- Después de añadir el reactivo, enjuague la punta aspirando y dispensando una vez en el pocillo correspondiente de la placa, a no ser que se indique otra cosa en el procedimiento.
- La temperatura ambiente se define como la temperatura que varía entre 15 °C y 30 °C.

Programas del termociclador

- Programe los programas del termociclador en los equipos de preamplificación y posamplificación antes de iniciar el protocolo.
- Asegúrese de que las placas de PCR encajen perfectamente en el termociclador.
- Use las placas recomendadas por el fabricante del termociclador.

Sellado y retirada del sello de la placa

- Selle siempre las placas con un sello adhesivo para placas nuevo. No reutilice los sellos.
- Para sellar la placa, aplíquele con seguridad la cubierta adhesiva con una cuña o un rodillo de sellado.
- Selle siempre la placa de 96 pocillos con un sello de placa adhesivo nuevo antes de llevar a cabo los siguientes pasos del protocolo:
 - Pasos de agitación de placas
 - Pasos de centrifugación
 - Pasos de termociclado

- Hibridaciones
- Almacenamiento prolongado
- Asegúrese de que los bordes y los pocillos estén sellados para reducir el riesgo de contaminación cruzada y evaporación.
- Coloque la placa en una superficie plana antes de retirar lentamente el sello.
- Antes de retirar el sello, si observa líquidos o condensación en el sello o en las paredes laterales de los pocillos de las placas, centrifugue a 280 × g durante 1 minuto.
- Use sellos adhesivos para placas que sean eficaces a una temperatura de entre -40 °C y 110 °C y que sean aptos para placas de PCR con faldón o semifaldón.

Equipo

• Asegúrese de que el personal de laboratorio esté familiarizado con las instrucciones del fabricante para operar y mantener todo el equipo antes de iniciar el ensayo.

Tipo de placa y transferencias de placas

- Para un almacenamiento y un rendimiento del ensayo óptimos, es preciso usar el tipo de placa adecuado.
- Cuando transfiera volúmenes entre placas, transfiera el volumen especificado desde cada pocillo de una placa al pocillo correspondiente de la placa de destino.
- Puede usar pipetas multicanal cuando transfiera muestras entre placas o gradillas de tubos.
- A la hora de agitar las placas, siga las directrices que se indican a continuación.
 - Use un agitador de placas para agitar las placas. No agite las placas en vórtex.
 - Agite las placas de PCR a 1200 rpm.
 - Agite las placas MIDI a 1800 rpm.
 - Siga las instrucciones del fabricante para asegurarse de que el agitador de placas sostenga la placa de forma segura.

Centrifugación

- Cuando las instrucciones en el protocolo indiquen centrifugar brevemente, centrifugue a 280 x g durante
 1 minuto.
- Si se observa líquido en el sello o en los laterales de un pocillo, centrifugue la placa a 280 × g durante 1 minuto.

Manipulación de los reactivos

• Justo después de usarlos, vuelva a tapar todos los tubos de reactivos de modo que queden apretados para limitar la evaporación e impedir que se produzca contaminación.

- Devuelva los reactivos a la temperatura de almacenamiento especificada cuando ya no los necesite para un procedimiento.
- Siga la preparación de reactivos previa a la sección de cada procedimiento de las *Instrucciones de uso*, en la página 37.
- Asegúrese de preparar el volumen requerido de mezcla maestra, mezcla de elución y etanol al 80 % para el número de muestras que esté procesando.
- Los volúmenes proporcionados en la mezcla maestra y las tablas de solución contienen excedente. Los cálculos del volumen excedente son los siguientes.
 - Tabla 14
 - Volumen de FSM = $(7.2 \,\mu\text{l}) \times (\text{número de muestras} + \text{controles}) \times (1.25)$.
 - Volumen de RVT = $(0.8 \,\mu\text{l}) \times (\text{número de muestras} + \text{controles}) \times (1.25)$.
 - Tabla 21
 - Volumen de ERA1-B = $(7,2 \mu I) \times (número de genotecas) \times (1,20)$.
 - Volumen de ERA1-A = (2,8 μl) × (número de genotecas) × (1,20).
 - Tabla 29
 - Volumen de EE2 = (20,9 µl) × (número de genotecas) × (1,364).
 - Volumen de HP3 = $(1,1 \mu I) \times (número de genotecas) \times (1,364)$.
 - Tabla 30
 - Volumen de EE2 = (20,9 µl) × (número de genotecas) × (1,364).
 - Volumen de HP3 = (1,1 μl) × (número de genotecas) × (1,364).
 - Tabla 36
 - Volumen de LNA1 = (38,1 μl) × (número de genotecas) × (2,0).
 - Volumen de LNB1 = (6,9 μl) × (número de genotecas) × (2,0).
 - Tabla 37
 - Volumen de EE2 = (30,4 μl) × (número de genotecas) × (1,25).
 - Volumen de HP3 = (1,6 µl) × (número de genotecas) × (1,25).

Juegos de adaptadores

- El ensayo de TSO Comprehensive (UE) incluye adaptadores UMI y adaptadores SUA1.
- Los adaptadores SUA1 están indicados para su uso con muestras de ARN, no de ADN.
- Los adaptadores UMI están indicados para su uso con muestras de ADN, no de ARN.

Manipulación de las bolas

- En el ensayo de TSO Comprehensive (UE) se incluyen tres tipos de bolas (SPB, SMB y LNB1). Durante el procedimiento, asegúrese de usar el tipo de bola correcto.
- Realice el número correcto de lavados para cada tipo de bola.
- Asegúrese de que las bolas estén a temperatura ambiente antes de usarlas.
- Mezcle las bolas durante 1 minuto antes de usarlas para garantizar la homogeneidad.
- Aplique las siguientes directrices a la hora de mezclar las bolas con una pipeta.
 - Use una pipeta y un tamaño de punta adecuados para el volumen que vaya a mezclar.
 - Regule los ajustes de volumen a aproximadamente el 50-75 % del volumen de la muestra.
 - Pipetee lentamente sin liberar el émbolo.
 - Evite las salpicaduras y que entren burbujas.
 - Coloque la punta de la pipeta por encima de la microesfera y dispense directamente hacia la microesfera para liberar las bolas del pocillo o el tubo.
 - Asegúrese de que la microesfera de bolas esté completamente dentro de la solución. La solución debe ser de color marrón oscuro y presentar una consistencia homogénea.
 - Evalúe si hay una microesfera de bolas presente. Aspire con cuidado el volumen total de la solución de bolas del pocillo en la punta y mire hacia la parte inferior de los pocillos.
- Si se aspiran las bolas en las puntas de las pipetas durante los pasos de separación magnética, dispense las bolas en el pocillo de la placa con el soporte magnético. Espere hasta que el líquido se vuelva transparente (aproximadamente 2 minutos) antes de ir al siguiente paso del procedimiento.
- Cuando lave las bolas:
 - Use el soporte magnético recomendado para la placa.
 - Dispense el líquido directamente en la microesfera de bolas de manera que se humedezcan las bolas del lateral de los pocillos.
 - Mantenga la placa en el soporte magnético hasta que el procedimiento especifique que la retire.
 - No agite la placa mientras esté en el soporte magnético.
 - Mientras se encuentre en el soporte magnético, no altere la microesfera de bolas.
- Cuando lave bolas o retire el sobrenadante, incline las puntas de las pipetas hacia la parte inferior de los pocillos para evitar crear un vacío y conducir la solución a los filtros de las puntas de las pipetas.

Formulario de seguimiento de laboratorio

• El Formulario de seguimiento de laboratorio de TruSight Oncology Comprehensive (UE) (n.º de documento 200009022) proporciona una lista de comprobación de los pasos del protocolo.

Número de genotecas y selección de índices

Antes de configurar el experimento, planifique el número de genotecas y los índices de muestras para el experimento de secuenciación. Las siguientes directrices sobre el número de muestras incluyen controles positivos, pero excluyen controles negativos/sin cadena molde (NTC). Los NTC deben añadirse al experimento planificado como una muestra adicional.

Para TSO Comprehensive (UE), siga las directrices de la Tabla 6 y la Tabla 7 para determinar el número de genotecas a secuenciar en una celda de flujo.

Tabla 6 Genotecas de ARN o ADN para TSO Comprehensive (UE)

Tipo de genoteca	Mínimo*	Máximo
ARN	3	16
ADN	3	8

Para una utilización óptima de los reactivos a la hora de secuenciar TSO Comprehensive (UE) en el Instrumento NextSeq 550Dx, secuencie 8 genotecas de ARN y 8 genotecas de ADN por celda de flujo.

Tabla 7 Combinación de genotecas de ARN y ADN para TSO Comprehensive (UE)

Número de genotecas de ADN	Número de genotecas de ARN
8	8

Durante la preparación de genotecas, añada el cebador de índice en cada genoteca de muestras. *Use una mezcla de cebador de índice diferente para cada genoteca de muestras*. Los cebadores de índice identifican únicamente cada muestra, de modo que las genotecas puedan agruparse conjuntamente para secuenciar en una celda de flujo. (Las combinaciones de índices compatibles se muestran en la pantalla Create Run [Crear experimento] durante la configuración del experimento en el Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE)).

Asegúrese de que los cebadores de índice que use con las muestras coincidan con los índices que seleccione para el análisis con el Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE). Las discrepancias generan informes con resultados incorrectos debido a que no se identifican las muestras positivas.

Existen dos tipos de índices en el ensayo TSO Comprehensive (UE).

- Índices UPxx: Utilice los índices UPxx para genotecas obtenidas de muestras de ARN o ADN.
- **Índices CPxx**: Use los índices CPxx para genotecas obtenidas de muestras de ADN. No use los índices CPxx para genotecas obtenidas de ARN ni si va a secuenciar un total de tres genotecas de ADN.

Cuando vaya a secuenciar solamente tres genotecas, debe tener en cuenta los siguientes aspectos.

- Las genotecas deben ser todas de ADN o todas de ARN.
- No use juegos de índices CPxx.

- Solo es necesario uno de los siguientes juegos de índices UPxx para proporcionar una diversidad suficiente.
 - UP01, UP02 y UP03
 - UP04, UP05 y UP06
 - UP07, UP08 y UP09
 - UP10, UP11 y UP12

Por ejemplo, a la primera genoteca se le asigna UP01, a la segunda genoteca UP02 y a la tercera genoteca UP03.

TruSight Oncology Controls

TSO Comprehensive (UE) requiere el uso de TruSight Oncology Controls, integrado por el TruSight Oncology DNA Control y el TruSight Oncology RNA Control como controles positivos. Incluya el TruSight Oncology DNA Control para cada experimento de secuenciación de ADN y el TruSight Oncology RNA Control para cada experimento de secuenciación de ARN dentro de un evento de preparación de genotecas dado (incluya también controles para experimentos de ADN y ARN combinados). Un control positivo único se prepara para cada experimento secuenciado planeado.

Incluya un NTC en cada evento de preparación de genotecas de ARN y ADN. El NTC se secuencia repetidamente dentro de un evento de preparación de genotecas. Siga estas directrices para TruSight Oncology Controls:

- Prepare las genotecas a partir de los controles positivos y los controles sin cadena molde de forma idéntica a las muestras.
- Use TEB para el NTC de ADN.
- Use agua sin desoxirribonucleasa/ribonucleasa para el NTC de ARN.
- Los controles positivos están incluidos en el requisito de genoteca máximo.
- Los NTC no están incluidos en el requisito de genoteca máximo.
- Use índices de UP para el NTC a la hora de secuenciar 3 genotecas.
- Puesto que el NTC se secuencia repetidamente, los índices seleccionados para este control no pueden repetirse en el evento de preparación de genotecas.

En las tablas que figuran a continuación se muestran diseños de placas de ejemplo para la preparación de genotecas. Cada columna numerada representa un experimento de secuenciación individual. A la hora de secuenciar conjuntamente genotecas de ADN y ARN, cada conjunto correspondiente de columnas representa un experimento de secuenciación individual (por ejemplo, columna 1 y columna 7). El NTC se secuencia para cada columna o conjunto de columnas.

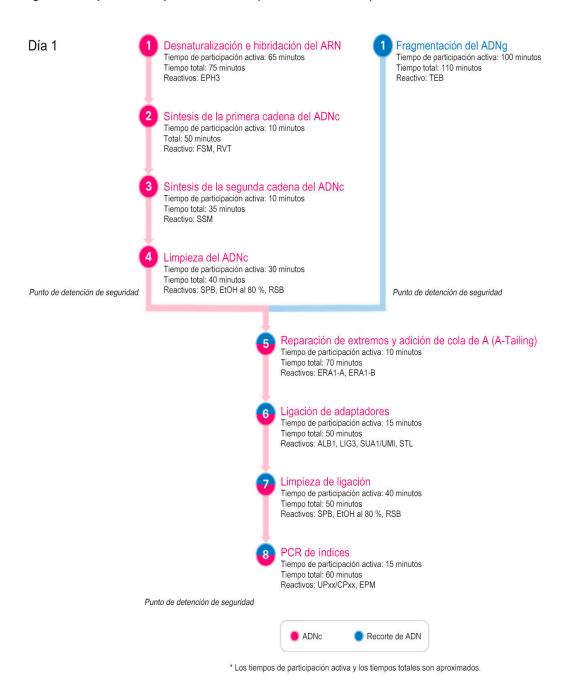
Tabla 8 Evento de preparación de genotecas de un experimento único que incluye seis muestras del paciente

	1	2	3	4	5	6	7
A	Control pos. de ADN	vacío	vacío	vacío	vacío	vacío	Control pos. de ARN
В	ADN 1	vacío	vacío	vacío	vacío	vacío	ARN 1
С	ADN 2	vacío	vacío	vacío	vacío	vacío	ARN 2
D	ADN 3	vacío	vacío	vacío	vacío	vacío	ARN 3
E	ADN 4	vacío	vacío	vacío	vacío	vacío	ARN 4
F	ADN 5	vacío	vacío	vacío	vacío	vacío	ARN 5
G	ADN 6	vacío	vacío	vacío	vacío	vacío	ARN 6
н	ADN NTC	vacío	vacío	vacío	vacío	vacío	NTC de ARN

Tabla 9 Evento de preparación de genotecas de tres experimentos que incluye 20 muestras de pacientes

	1	2	3	4	5	6	7
Α	Control pos. de ADN	Control pos. de ADN	Control pos. de ADN	vacío	Control pos. de ARN	Control pos. de ARN	Control pos. de ARN
В	ADN 1	ADN 7	ADN 14	vacío	ARN 1	ARN 7	ARN 14
С	ADN 2	ADN 8	ADN 15	vacío	ARN 2	ARN 8	ARN 15
D	ADN 3	ADN 9	ADN 16	vacío	ARN 3	ARN 9	ARN 16
E	ADN 4	ADN 10	ADN 17	vacío	ARN 4	ARN 10	ARN 17
F	ADN 5	ADN 11	ADN 18	vacío	ARN 5	ARN 11	ARN 18
G	ADN 6	ADN 12	ADN 19	vacío	ARN 6	ARN 12	ARN 19
Н	ADN NTC	ADN 13	ADN 20	vacío	NTC de ARN	ARN 13	ADN 20

Instrucciones de uso


En la Figura 1 y en la Figura 2 se muestra un resumen del flujo de trabajo de TSO Comprehensive (UE).

Flujo de trabajo de preparación de genotecas

La Figura 1 muestra el flujo de trabajo de la preparación de genotecas para el TSO Comprehensive (UE). Las genotecas de las muestras de ARN y ADN pueden prepararse de forma simultánea en pocillos separados. Los controles positivos y los controles sin cadena molde se procesan de forma idéntica a las muestras. Los puntos de detención de seguridad se marcan entre los pasos.

Antes de iniciar el protocolo, introduzca la información del experimento y la muestra en una hoja de muestras v2 a utilizar con Módulo de análisis de Local Run Manager TruSight Oncology Comprehensive (UE). Consulte Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661).

Figura 1 Flujo de trabajo de TSO Comprehensive (UE) (parte 1)

Flujo de trabajo del enriquecimiento

La Figura 2 muestra el flujo de trabajo del enriquecimiento para el TSO Comprehensive (UE). Los puntos de detención de seguridad se marcan entre los pasos.

Figura 2 Flujo de trabajo de TSO Comprehensive (UE) (parte 2)

Programación de los termocicladores

Antes de iniciar el ensayo, guarde los siguientes programas en termocicladores de preamplificación y posamplificación.

Tabla 10 Programas del termociclador de preamplificación

Paso del procedimiento	Nombre del programa	Temperatura de la tapa	Volumen de la reacción	Parámetros del termociclador
Desnaturalización e hibridación de ARN	LQ-RNA	100 °C	17 μl	 65 °C durante 5 minutos 4 °C durante 1 minuto 4 °C constantes
Síntesis de la primera cadena del ADNc	1stSS	100 °C	25 µl	 25 °C durante 10 minutos 42 °C durante 15 minutos 70 °C durante 15 minutos 4 °C durante 1 minuto 4 °C constantes
Síntesis de la segunda cadena del ADNc	2ndSS	30 °C	50 μΙ	 16 °C durante 25 minutos 4 °C durante 1 minuto 4 °C constantes

NOTA Si la temperatura de la tapa para 2ndSS no puede ajustarse a 30 °C, apague la opción de calentamiento de tapa precalentada.

Tabla 11 Programas del termociclador de posamplificación

9				
Paso del procedimiento	Nombre del programa	Temperatura de la tapa	Volumen de la reacción	Parámetros del termociclador
PCR de índices	I-PCR	100 °C	50 µl	 98 °C durante 30 segundos 15 ciclos de: 98 °C durante 10 segundos 60 °C durante 30 segundos. 72 °C durante 30 segundos 72 °C durante 5 minutos 10 °C constantes
Realización de la primera hibridación	НҮВ1	100 °C	50 µl	 95 °C durante 10 minutos 85 °C durante 2 min y 30 segundos 75 °C durante 2 min y 30 segundos 65 °C durante 2 min y 30 segundos 57 °C constantes de 8 a 24 horas
Realización de la segunda hibridación	НҮВ2	100 °C	50 µl	 95 °C durante 10 minutos 85 °C durante 2 min y 30 segundos 75 °C durante 2 min y 30 segundos 65 °C durante 2 min y 30 segundos 57 °C constantes de 1,5 a 4 horas

Paso del procedimiento	Nombre del programa	Temperatura de la tapa	Volumen de la reacción	Parámetros del termociclador
Amplificación de las genotecas enriquecidas	EL-PCR	100 °C	50 µl	 98 °C durante 30 s 18 ciclos de: 98 °C durante 10 s 60 °C durante 30 s. 72 °C durante 30 s 72 °C durante 5 min 10 °C constantes

Preparación de los pasos del protocolo

1. Descontamine a fondo las zonas de trabajo con una solución de limpieza que inhiba la ribonucleasa/desoxirribonucleasa.

PRECAUCIÓN

Todos los procedimientos del flujo de trabajo requieren un entorno libre de ribonucleasa/desoxirribonucleasa.

- 2. Ajuste los programas del termociclador de preamplificación. Consulte *Programación de los termocicladores*, en la página 40.
- 3. Siga las instrucciones del fabricante para configurar el ultrasonicador.
- 4. Si únicamente va a procesar muestras de ADN, pase directamente a *Fragmentación del ADNg*, en la página 46.
- 5. Retire los controles de ARN del almacenamiento.
- 6. Retire los tubos de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 12 TruSight Oncology Comp RNA Library Prep (n.º de referencia 20031127)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
EPH3	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Desnaturalización e hibridación de ARN
FSM	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Síntesis de la primera cadena del ADNc
RVT	Entre -25 °C y -15 °C	Mantenga en hielo.	Síntesis de la primera cadena del ADNc
SSM	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Síntesis de la segunda cadena del ADNc

Tabla 13 TruSight Oncology Comp Library Prep (Refrigerate) (n.º de referencia 20031119)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
SPB (etiqueta verde claro)	Entre 2 °C y 8 °C	Déjelo a temperatura ambiente durante 30 minutos.	Limpieza del ADNc
RSB	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Limpieza del ADNc

Desnaturalización e hibridación de ARN

Este proceso desnaturaliza el ARN purificado y ceba con hexámeros aleatorios en la preparación para la síntesis de ADNc.

Preparación

- 1. Prepare los siguientes reactivos.
 - EPH3: Aparte.
 - FSM: Agite en vórtex para mezclar. Centrifugue brevemente y, a continuación, pipetee para mezclar. El reactivo puede contener partículas blancas relacionadas con el producto. No se requiere ninguna acción por parte del usuario. Esto no afecta al rendimiento del producto.
 - RVT: Centrifugue brevemente y, a continuación, pipetee para mezclar. Mantenga en hielo.

NOTA RVT es una solución viscosa. Minimice la formación de burbujas durante el pipeteo.

2. En un tubo de microcentrífuga, combine los siguientes volúmenes para preparar una mezcla maestra de FSM + RVT.

Tabla 14 Mezcla maestra de FSM + RVT

Componente de la mezcla maestra	4 genotecas (μl)	8 genotecas (µI)	16 genotecas (µI)	24 genotecas (µI)
FSM	36	72	144	216
RVT	4	8	16	24

En esta tabla se incluye el excedente de volumen. Consulte *Manipulación de los reactivos*, en la página 31 para ver los cálculos.

- 3. Pipetee diez veces para mezclar.
- 4. Ponga la mezcla maestra de FSM + RVT en hielo hasta la *Síntesis de la primera cadena del ADNc*, en la página 43.

Procedimiento

- Descongele las muestras de ARN extraídas y los controles de ARN en hielo.
 Procese los controles de ARN como muestras para el resto del protocolo.
- 2. Almacene el ARN en hielo cuando no lo vaya a usar. Consulte *Requisitos de la muestra*, en la página 24 para cuantificar las muestras.
- 3. Pipetee cada muestra de ARN 10 veces para mezclar.
- 4. Use agua sin ribonucleasa/desoxirribonucleasa para preparar 40 ng de cada muestra de ARN en un volumen final de $8,5 \mu l$ ($4,7 \text{ ng/}\mu l$).
 - Para los controles de ARN, use la concentración proporcionada en la etiqueta del tubo.
- 5. Etiquete una nueva placa de PCR de 96 pocillos como CF (Fragmentos de ADNc).

- 6. Añada 8,5 µl de cada muestra de ARN a un único pocillo de la placa de PCR de CF.
- 7. Asegúrese de que el diseño de la placa de muestras y los índices para cada muestra coincidan con el experimento planeado en Módulo de análisis de TSO Comprehensive (UE) durante la configuración del experimento.
- 8. Agite en vórtex la EPH3 para mezclar y, a continuación, centrifugue brevemente.
- 9. Añada 8,5 µl de EPH3 en cada pocillo de muestra.
- 10. Aplique sello adhesivo para placas en la placa de PCR de CF.

PRECAUCIÓN

Asegúrese de sellar los bordes y los pocillos completamente para evitar que se produzca evaporación.

- 11. Agite a 1200 rpm durante 1 minuto.
- 12. Centrifugue a 280 × g durante 1 minuto.
- 13. Coloque la placa en el termociclador y ejecute el programa LQ-RNA. Consulte *Programación de los termocicladores*, en la página 40.
- 14. Cuando las muestras alcancen los 4 °C, manténgalas un minuto y, a continuación, vaya inmediatamente al siguiente paso.

Síntesis de la primera cadena del ADNc

En este proceso, se realiza una transcripción inversa de los fragmentos de ARN cebados con hexámeros aleatorios en el ADNc de la primera cadena mediante la transcriptasa inversa.

Procedimiento

- 1. Retire la placa de PCR de CF del termociclador.
- 2. Pipetee 10 veces para mezclar la mezcla maestra de FSM + RVT. Asegúrese de que la mezcla de FSM + RVT sea completamente homogénea.
- 3. Añada 8 µl de mezcla maestra de FSM + RVT a cada pocillo de la muestra.
- 4. Pipetee 10 veces para mezclar.
- 5. Deseche la mezcla maestra de FSM + RVT restante.
- Aplique sello adhesivo para placas en la placa de PCR de CF.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 7. Agite a 1200 rpm durante 1 minuto.
- 8. Centrifugue a 280 × g durante 1 minuto.
- 9. Coloque la placa en un termociclador y ejecute el programa 1stSS. Consulte *Programación de los termocicladores*, en la página 40.
- Cuando las muestras alcancen los 4 °C, vaya inmediatamente al siguiente paso.
 Las muestras de primera cadena pueden mantenerse a 4 °C durante un periodo máximo de 5 minutos.

Síntesis de la segunda cadena del ADNc

Este proceso elimina la cadena molde de ARN y sintetiza el ADNc bicatenario.

Preparación

- 1. Prepare el siguiente reactivo.
 - SSM: Invierta 10 veces para mezclar. Centrifugue brevemente.

Procedimiento

- 1. Retire la placa de PCR de CF del termociclador.
- 2. Añada 25 µl de SSM a cada pocillo de muestra.
- Aplique sello adhesivo para placas en la placa de PCR de CF.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 4. Agite a 1200 rpm durante 1 minuto.
- 5. Centrifugue a 280 × g durante 1 minuto.
- 6. Coloque la placa en un termociclador y ejecute el programa 2ndSS. Consulte *Programación de los termocicladores*, en la página 40.
- 7. Cuando las muestras alcancen los 4 °C, manténgalas un minuto y, a continuación, vaya inmediatamente al siguiente paso.

Limpieza del ADNc

En este proceso se usan SPB para purificar el ADNc de componentes de reacción no deseados. Las bolas se lavan dos veces con etanol al 80 % nuevo. El ADNc se eluye con RSB.

- 1. Prepare los siguientes reactivos.
 - SPB: Asegúrese de que las bolas estén a temperatura ambiente durante 30 minutos.
 - RSB: Apártelo para usarlo en el procedimiento.
- 2. Prepare EtOH al 80 % nuevo en un tubo cónico de 15 ml o 50 ml.

Tabla 15 Prepare EtOH al 80 % nuevo.

Reactivo	4 genotecas	8 genotecas	16 genotecas	24 genotecas
Alcohol de etanol al 100 % puro	2 ml	4 ml	8 ml	12 ml
Agua sin	500 µl	1 ml	2 ml	3 ml
ribonucleasa/desoxirribonucleasa				

- 3. Agite en vórtex EtOH al 80 % nuevo para mezclar.
- 4. Etiquete una nueva placa MIDI de 96 pocillos como BIND1 (Unión de ADNc).

- 5. Cúbrala y apártela.
- 6. Configure el imán.

Procedimiento

Unión

- 1. Retire la placa de PCR de CF del termociclador.
- 2. Agite en vórtex las SPB durante 1 minuto para volver a suspender las bolas.
- 3. Justo después, añada 90 µl de SPB a cada pocillo de muestra para la placa MIDI de BIND1. Si se usa una cubeta para dispensar SPB, incluya un factor de excedente de 1,05 al alicuotar suficiente material por muestra. Deseche el material restante después de añadir las SPB a cada pocillo de la muestra.
- 4. Transfiera el volumen íntegro (50 μl) de cada muestra de la placa de PCR de CF al pocillo correspondiente de la placa MIDI de BIND1.
- 5. Deseche la placa de PCR de CF vacía.
- 6. Aplique sello adhesivo para placas en la placa MIDI de BIND1. Selle los bordes y los pocillos completamente.
- 7. Agite a 1800 rpm durante 2 minutos.
- 8. Incube a temperatura ambiente durante 5 minutos.
- 9. Coloque la placa MIDI de BIND1 en un soporte magnético durante 5 minutos.
- 10. Use una pipeta P200 ajustada en 200 µl para retirar y desechar todo el sobrenadante de cada pocillo de muestra sin alterar la microesfera de bolas.

Lavado

- 1. Lave las bolas de la siguiente manera.
 - a. Mantenga en el soporte magnético y añada 200 µl de EtOH al 80 % nuevo a cada pocillo.
 - b. Espere 30 segundos.
 - c. Retire y deseche todo el sobrenadante de cada pocillo.
- 2. Lave las bolas una segunda vez.
- 3. Retire los residuos de EtOH de cada pocillo. Use una pipeta P20 con puntas finas.
- 4. Deseche el EtOH al 80 % sin usar.

Elución

- 1. Retire la placa MIDI de BIND1 del soporte magnético.
- 2. Invierta el RSB o agítelo en vórtex para mezclar.
- 3. Añada 22 µl de RSB a cada pocillo de muestra.

- 4. Aplique sello adhesivo para placas en la placa MIDI de BIND1. Selle los bordes y los pocillos completamente.
- 5. Agite a 1800 rpm durante 2 minutos.
- 6. Incube a temperatura ambiente durante 2 minutos.
- 7. Coloque la placa en un soporte magnético durante 2 minutos.
- 8. Etiquete una nueva placa MIDI de 96 pocillos como PCF (Fragmentos de ADNc purificados). Si se va a detener en el *PUNTO DE DETENCIÓN DE SEGURIDAD*, en la página 46, use una placa de PCR.
- 9. Transfiera 20 µl de eluido de cada pocillo de muestra de la placa MIDI de BIND1 al pocillo correspondiente de la placa de PCF.
- 10. Deseche la placa MIDI de BIND1 vacía.
- 11. Añada 30 µl de RSB a cada pocillo de muestra de la placa de PCF.
- 12. Pipetee para mezclar 10 veces.
- 13. Aplique sello adhesivo para placas en la placa de PCF y consérvela en hielo.
- 14. Vuelva a almacenar la EPH3, la FSM, la RVT y la SSM.
- 15. Si está procesando muestras obtenidas únicamente de ARN (ADNc), y no se va a detener en el punto de detención de seguridad, pase a *Reparación de extremos y adición de cola de A*, en la página 49.

PUNTO DE DETENCIÓN DE SEGURIDAD

Si debe detener el procedimiento, centrifugue la placa de PCR de PCF a $280 \times g$ durante 1 minuto y almacénela a entre -25 °C y -15 °C durante un periodo máximo de 7 días.

Preparación de los pasos del protocolo

- 1. Retire los controles de ADN del almacenamiento.
- 2. Retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 16 TruSight Oncology Comp Library Prep (Refrigerate) (n.º de referencia 20031119)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
TEB	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Fragmentación del ADNg

Fragmentación del ADNg

Este proceso fragmenta ADNg y genera fragmentos de ADNbc con extremos 3' o 5' protuberantes.

- 1. Asegúrese de seguir las recomendaciones recogidas en *Extracción, cuantificación y almacenamiento de ácido nucleico*, en la página 24 para cuantificar las muestras.
- 2. Prepare el siguiente reactivo.
 - Invierta el TEB o agítelo en vórtex para mezclar.

Procedimiento

Preparación de la placa

- 1. Seleccione una de las siguientes tres opciones para preparar la placa.
 - Opción n.º 1: Procese las muestras de ADNg de forma simultánea con las muestras de ADNc en la placa MIDI de PCF.
 - a. Etiquete la placa MIDI de PCF como LP (preparación de genotecas).
 - b. Colóquela en hielo y apártela para su uso en Transferencia de ADN fragmentado, en la página 48.
 - Opción n.º 2: Procese las muestras de ADNg de forma simultánea con las muestras de ADNc y la placa de PCR de PCF se congela.
 - a. Descongele la placa de PCR de PCF a temperatura ambiente.
 - b. Centrifugue a 280 × g durante 1 minuto.
 - c. Pipetee 10 veces para mezclar.
 - d. Etiquete una nueva placa MIDI de 96 pocillos como LP (preparación de genotecas).
 - e. Transfiera los 50 µl de cada muestra de la placa de PCR de PCF al pocillo correspondiente de la placa MIDI de LP.
 - f. Deseche la placa de PCR de PCF.
 - g. Aplique sello adhesivo para placas y colóquela en hielo hasta la *Transferencia de ADN fragmentado*, en la página 48.
 - Opción n.º 3: Procese solamente las muestras de ADNg.
 - a. Etiquete una nueva placa MIDI de 96 pocillos como LP (preparación de genotecas).
 - b. Si se va a detener en el *PUNTO DE DETENCIÓN DE SEGURIDAD*, en la página 48, use una placa de PCR.
 - c. Cúbrala y apártela para su uso en Transferencia de ADN fragmentado, en la página 48.

Dilución del ADNg

- 1. Descongele las muestras de ADNg y los controles de ADN a temperatura ambiente.
- 2. Pipetee cada muestra de ADNg 10 veces para mezclar.
- 3. Centrifugue el tubo brevemente para recoger las gotas.
- 4. Invierta el TEB o agítelo en vórtex para mezclar.
- 5. Use el TEB para preparar cada muestra de ADNg en un volumen final de 52 μl. Consulte la siguiente tabla para ver las cantidades de entrada y las concentraciones mínimas en función del tipo de muestra. El ensayo requiere una concentración de extracción mínima para permitir al menos 40 μl de TEB del volumen de 52 μl. Para los controles de ADN, utilice la concentración proporcionada en la etiqueta del tubo. Para prevenir la pérdida de muestras, no pipetee menos de 2 μl de muestra en esta dilución.

Tipo de muestra Cantidad de entrada (ng)		Concentración mínima (ng/µl)
FFPE	40	3,33
Control	40	Consulte la etiqueta del tubo

Fragmentación

1. Añada 52 µl de cada muestra de ADNg a un pocillo separado del tubo del ultrasonicador.

PRECAUCIÓN

Cargue el ADNg en el tubo lentamente; asegúrese de que no se formen cámaras de aire en el fondo del tubo. Para obtener más información, consulte *Ensayo*, en la página 27 y las instrucciones del fabricante.

- 2. Registre la orientación de la tira.
- 3. Fragmente el ADNg en fragmentos con un ultrasonicador.

Transferencia de ADN fragmentado

- 1. Asegúrese de que la disposición de la placa de muestras y los índices para cada muestra coincidan con el experimento que seleccione para el análisis con Módulo de análisis de TSO Comprehensive (UE).
- Siga las instrucciones del fabricante del ultrasonicador para recuperar la muestra.
 Para algunos tipos de tubo de ultrasonicador, la centrifugación puede ser necesaria para consolidar la muestra en el tubo.
- 3. Para cada muestra de ADNg fragmentado, use una pipeta p20 con puntas finas para realizar tres transferencias de 16,7 µl a un pocillo vacío de la placa MIDI de LP.
- 4. Aplique sello adhesivo para placas en la placa MIDI de LP.

PUNTO DE DETENCIÓN DE SEGURIDAD

Si debe detener el procedimiento, aplique sello adhesivo para placas en la placa de PCR de LP y centrifugue a 280 × g durante 1 minuto. Almacénela a una temperatura de entre -25 °C y -15 °C durante un periodo máximo de 7 días.

Preparación de los pasos del protocolo

Asegúrese de ajustar los programas del termociclador de posamplificación. Consulte *Programación de los termocicladores*, en la página 40.

- 1. Prepare un cubo de hielo.
- 2. Retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 17 TruSight Oncology Comp Library Prep (Freeze) Box (n.º de referencia 20031118)

D + i	Al	lu-tu	Dana dal musta a da
Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
ERA1-A	Entre -25 °C y -15 °C	Mantenga en hielo.	Reparación de extremos y adición de cola de A
ERA1-B	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Reparación de extremos y adición de cola de A
ALB1	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Ligación de adaptadores
LIG3	Entre -25 °C y -15 °C	Mantenga en hielo.	Ligación de adaptadores
SUA1 (tapa azul)	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Ligación de adaptadores
UMI (tapa blanca)	Entre –25 °C y -15 °C	Descongele a temperatura ambiente.	Ligación de adaptadores
STL	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Ligación de adaptadores
EPM	Entre -25 °C y -15 °C	Mantenga en hielo.	PCR de índices

Tabla 18 TruSight Oncology Comp Library Prep (Refrigerate) Box (n.º de referencia 20031119)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
SPB (etiqueta verde claro)	Entre 2 °C y 8 °C	Déjelo a temperatura ambiente durante 30 minutos.	Limpieza de ligadura
RSB	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Limpieza de ligadura

Tabla 19 TruSight Oncology Comp UP Index Primers Box (n.º de referencia 20031120)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
UPxx	Entre -25 °C y -15 °C	Descongele los tubos de cebador de índice correspondientes a temperatura ambiente.	PCR de índices

Tabla 20 TruSight Oncology Comp CP Index Primers Box (n.º de referencia 20031126)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
CPxx	Entre -25 °C y -15 °C	Descongele los tubos de cebador de índice correspondientes a temperatura ambiente.	PCR de índices

Reparación de extremos y adición de cola de A

Este proceso repara los protuberantes resultantes de la fragmentación en extremos con una cola de A protuberante mediante una mezcla maestra de reparación de extremos y adición de cola de A (ERA1).

La actividad de la exonucleasa 3' a 5' de esta mezcla elimina los extremos 3' protuberantes y la actividad de la polimerasa 5' a 3' rellena los extremos 5' protuberantes. Se añade una cola de A a los extremos 3' durante esta reacción para impedir que se liguen entre sí durante la reacción de ligadura de adaptadores.

- 1. Precaliente 2 estaciones de incubación de micromuestras con insertos de termobloque MIDI de la siguiente manera.
 - Precaliente una estación de incubación de micromuestras a 30 °C.

- Precaliente una estación de incubación de micromuestras a 72 °C.
- 2. Prepare los siguientes reactivos.
 - ERA1-A: Centrifugue brevemente y, a continuación, pipetee para mezclar. Mantenga en hielo.
 - ERA1-B: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente. Inspeccione en busca de precipitados. Si los hay, caliente el tubo a 37 °C y, a continuación, pipetee para mezclar hasta que los precipitados se disuelvan.
- 3. Prepare la mezcla maestra de ERA1 en un tubo de microcentrífuga.

Tabla 21 Mezcla maestra de ERA11

Componente de la mezcla maestra	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
ERA1-B	35 µl	69 µl	138 µl	207 μΙ	415 µl
ERA1-A	13,5 µl	27 µl	54 µl	81 µl	161 µl

¹ En esta tabla se incluye el excedente de volumen. Consulte *Manipulación de los reactivos*, en la página 31 para ver los cálculos.

- 4. Pipetee lentamente 10 veces para garantizar la homogeneidad, centrifugue brevemente y, a continuación, coloque la mezcla maestra de ERA1 en hielo.
- 5. Seleccione la opción correspondiente de las dos opciones siguientes para preparar la placa.
 - Opción n.º 1: Si las mezclas están en la placa MIDI:
 - Vuelva a etiquetar la placa MIDI como LP2 (Preparación de genotecas 2).

Si algunas muestras se encuentran en placas MIDI separadas, mueva todas las muestras a pocillos separados de la misma placa MIDI de acuerdo con el diseño de la placa.

- Opción n.º 2: Si la placa está congelada:
 - a. Descongele la placa de PCR de PCF o la placa de PCR de LP a temperatura ambiente.
 - b. Centrifuque la placa a 280 × g durante 1 minuto.
 - c. Pipetee 10 veces para mezclar.
 - d. Etiquete una nueva placa MIDI de 96 pocillos como LP2 (Preparación de genotecas 2).
 - e. Transfiera los 50 µl de cada muestra de la placa de PCR de PCF o la placa de PCR de LP al pocillo correspondiente de la placa MIDI de LP2.
 - f. Deseche la placa de PCR de PCF o la placa de PCR de LP.

Procedimiento

- 1. Añada 10 µl de mezcla maestra de ERA1 a cada pocillo de muestra en la placa MIDI de LP2.
- 2. Deseche la mezcla maestra de ERA1 restante.
- Aplique sello adhesivo para placas en la placa MIDI de LP2.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 4. Agite a 1800 rpm durante 2 minutos.
- 5. Incube en la estación de incubación de micromuestras precalentada a 30 °C durante 30 minutos.

- 6. Realice una transferencia a una segunda estación de incubación de micromuestras precalentada e incube a 72 °C durante 20 minutos.
- 7. Coloque la placa MIDI de LP2 en hielo durante 5 minutos.

Ligación de adaptadores

Este proceso liga los adaptadores a los extremos de los fragmentos de ADNc o ADNg.

El ensayo de TSO Comprehensive (UE) incluye adaptadores SUA1 y adaptadores UMI.

- Utilice los adaptadores SUA1 con las muestras de ARN.
- Utilice los adaptadores UMI con las muestras de ADN.

Preparación

- 1. Prepare los siguientes reactivos.
 - ALB1: Agite en vórtex durante 10 segundos como mínimo para mezclar y, a continuación, centrifugue brevemente.
 - LIG3: Centrifugue brevemente y, a continuación, pipetee para mezclar. Mantenga en hielo.
 - SUA1: Agite en vórtex durante 10 segundos como mínimo para mezclar y, a continuación, centrifugue brevemente.
 - UMI: Agite en vórtex durante 10 segundos como mínimo para mezclar y, a continuación, centrifugue brevemente.
 - STL: Apártelo para usarlo en el procedimiento.

Procedimiento

- Retire del hielo la placa MIDI de LP2.
- 2. Añada 60 µl de ALB1 a cada pocillo de muestra de la placa MIDI de LP2. ALB1 es una solución viscosa; minimice la formación de burbujas durante el pipeteo.
- 3. Añada 5 µl de LIG3 a cada pocillo de muestra.
- 4. Añada los adaptadores.

No combine entre sí tipos diferentes de adaptadores.

- Pocillos de muestras de ARN: 10 µl de SUA1 (tapa azul) a cada muestra derivada de ARN.
- Pocillos de muestras de ADN: 10 µl de UMI (tapa blanca) a cada muestra derivada de ADN.
- 5. Aplique sello adhesivo para placas en la placa MIDI de LP2.
 - Selle los bordes y los pocillos completamente.
- 6. Agite a 1800 rpm durante 2 minutos.
- 7. Incube a temperatura ambiente durante 30 minutos.
- 8. Agite en vórtex el STL para mezclar y, a continuación, centrifugue brevemente.

- 9. Añada 5 µl de STL a cada pocillo de muestra de la placa MIDI de LP2.
- Aplique sello adhesivo para placas en la placa MIDI de LP2.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 11. Agite a 1800 rpm durante 2 minutos.

Limpieza de ligadura

En este proceso se usan SPB para purificar los fragmentos de ADNc o ADNg ligados por adaptadores y se eliminan los productos no deseados. Las bolas se lavan dos veces con etanol al 80 % nuevo. Las muestras ligadas por adaptadores se eluyen con RSB.

- 1. Prepare los siguientes reactivos.
 - SPB: Asegúrese de que las bolas estén a temperatura ambiente durante 30 minutos.
 - RSB: Apártelo para usarlo en el procedimiento.
- 2. Prepare EtOH al 80 % nuevo en un tubo cónico de 15 ml o 50 ml.

Tabla 22 Prepare etanol al 80 % nuevo.

Reactivo	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
Alcohol de etanol al 100 % puro	2 ml	4 ml	8 ml	12 ml	24 ml
Agua sin ribonucleasa/desoxirribonucleasa	500 μΙ	1 ml	2 ml	3 ml	6 ml

- 3. Agite en vórtex EtOH al 80 % nuevo para mezclar.
- 4. Configure el imán.

Procedimiento

Unión

- 1. Agite en vórtex las SPB durante 1 minuto para volver a suspender las bolas.
- 2. Justo después, añada 112 µl de SPB a cada pocillo de muestra en la placa MIDI de LP2. Si se usa una cubeta para dispensar SPB, incluya un factor de excedente de 1,05 al alicuotar suficiente material por muestra. Deseche el material restante después de añadir las SPB a cada pocillo de la muestra.
- Aplique sello adhesivo para placas en la placa MIDI de LP2.
 Selle los bordes y los pocillos completamente.
- 4. Agite a 1800 rpm durante 2 minutos.
- 5. Incube a temperatura ambiente durante 5 minutos.
- 6. Coloque la placa MIDI de LP2 en el soporte magnético durante 10 minutos.
- 7. Use una pipeta P200 ajustada a 200 µl para retirar y desechar todo el sobrenadante de cada pocillo de muestra sin alterar la microesfera de bolas.

Lavado

- 1. Lave las bolas de la siguiente manera.
 - a. Mantenga en el soporte magnético y añada 200 µl de EtOH al 80 % nuevo a cada pocillo de muestra.
 - b. Espere 30 segundos.
 - c. Retire y deseche todo el sobrenadante de cada pocillo sin alterar la microesfera de bolas.
- 2. Lave las bolas una segunda vez.
- Retire los residuos de EtOH de cada pocillo.
 Use una pipeta P20 con puntas finas.
- 4. Deseche el EtOH al 80 % sin usar.

Elución

- 1. Retire la placa MIDI de LP2 del soporte magnético.
- 2. Invierta el RSB o agítelo en vórtex para mezclar.
- 3. Añada 27,5 µl de RSB a cada pocillo de muestra.
- 4. Aplique sello adhesivo para placas en la placa MIDI de LP2. Selle los bordes y los pocillos completamente.
- 5. Agite a 1800 rpm durante 2 minutos.
- 6. Incube a temperatura ambiente durante 2 minutos.
- 7. Coloque la placa en un soporte magnético durante 2 minutos.
- 8. Etiquete una nueva placa de PCR de 96 pocillos como LS (muestras de genotecas).
- 9. Transfiera 25 µl de cada eluido de la placa MIDI de LP2 al pocillo correspondiente de la placa de PCR de LS.
- 10. Deseche la placa MIDI de LP2 vacía.

PCR de índices

En este paso, los fragmentos de genotecas se amplifican con cebadores que añaden secuencias de índices para el multiplexado de muestras. El producto resultante contiene la genoteca completa de fragmentos de ADNc o ADN flanqueados por los adaptadores necesarios para la generación de grupos.

- 1. Prepare los siguientes reactivos.
 - EPM: Mantenga en hielo.
 - UPxx: Agite en vórtex para mezclar y centrifugue brevemente. UPxx es el cebador de índice seleccionado en la pantalla Create Run (Crear experimento) del software Local Run Manager durante la configuración del experimento.

- CPxx: Agite en vórtex para mezclar y centrifugue brevemente. CPxx es el cebador de índice seleccionado en la pantalla Create Run (Crear experimento) del software Local Run Manager durante la configuración del experimento.
- 2. Asegúrese de que los índices para cada muestra coincidan con el experimento planeado en Módulo de análisis de TSO Comprehensive (UE) durante la configuración del experimento. Asegúrese de seguir las instrucciones en lo que respecta a la selección de índices en *Número de genotecas y selección de índices*, en la página 34.

PRECAUCIÓN

Las discrepancias entre las muestras y los cebadores de indexación generan informes con resultados incorrectos debido a que no se identifican las muestras positivas.

Procedimiento

1. Añada 5 µl del cebador de índice adecuado (UPxx o CPxx) en el pocillo de muestra correspondiente de la placa de PCR de LS de acuerdo con los índices seleccionados.

PRECAUCIÓN

Manipule y abra solamente un tubo de cebador de índice a la vez. Tape cada tubo de índice con una tapa nueva inmediatamente después de su uso. No combine cebadores de índice entre sí.

- 2. Agite en vórtex la EPM para mezclar durante 5 segundos y, a continuación, centrifugue brevemente.
- 3. Añada 20 µl de EPM a cada pocillo de muestra.
- Aplique sello adhesivo para placas en la placa de PCR de LS.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 5. Agite a 1200 rpm durante 1 minuto.
- 6. Vuelva a almacenar los reactivos de preamplificación.

PRECAUCIÓN

Ejecute todos los pasos sucesivos en una zona de posamplificación para evitar el arrastre del producto de amplificación.

- 7. Centrifugue la placa de PCR de LS a 280 × g durante 1 minuto.
- 8. Coloque la placa en el ciclador térmico de posamplificación preprogramado y ejecute el programa I-PCR. Consulte *Programación de los termocicladores*, en la página 40.

NOTA Si continúa con la *Configuración de la primera hibridación*, en la página 56, siga las instrucciones de descongelación para los reactivos de Preparación de los pasos del protocolo.

- 9. Una vez finalizado el programa I-PCR, centrifugue la placa de PCR de LS a 280 x g durante 1 minuto.
- 10. Vuelva a etiquetar la placa como ALS (Muestras de genotecas amplificadas).

PUNTO DE DETENCIÓN DE SEGURIDAD

Si debe detener el procedimiento, selle la placa de PCR de ALS a entre -25 °C y -15 °C durante un periodo máximo de 30 días.

Preparación de los pasos del protocolo

- 1. Asegúrese de ajustar los programas del termociclador de posamplificación. Consulte *Programación de los termocicladores*, en la página 40.
- 2. Retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 23 TruSight Oncology Comp Enrichment (Refrigerate) Box (n.º de referencia 20031123)

Reactivo	Almacenamiento Instrucciones de descongelación		Paso del protocolo
TCB1	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Configuración de la primera hibridación

Tabla 24 TruSight Oncology Comp Enrichment (Freeze) Box (n.º de referencia 20031121)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo	
TCA1	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Configuración de la primera hibridación	

Tabla 25 TruSight Oncology Comp Content Set Box (n.º de referencia 20031122)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
OPR1 (tapa roja)	Entre –25 °C y -15 °C	Descongele a temperatura ambiente.	Configuración de la primera hibridación
OPD2 (tapa blanca)	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Configuración de la primera hibridación

Configuración de la primera hibridación

Durante este proceso, un grupo de oligonucleótidos se hibrida en genotecas de ADNc y un grupo de oligonucleótidos se hibrida en genotecas de ADNg preparadas en *PCR de índices*, en la página 54. El enriquecimiento de las regiones de interés requiere dos pasos de hibridación. En la primera hibridación, los oligonucleótidos se hibridan en las genotecas de ADNc o ADNg durante la noche (de 8 horas a 24 horas).

- 1. Prepare los siguientes reactivos.
 - TCB1: Caliente el tubo a 37 °C durante 5 minutos. Agite en vórtex durante 10 segundos para mezclar y, a continuación, centrifugue brevemente.
 - TCA1: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - OPR1: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - OPD2: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.

- 2. Si la placa de PCR de ALS estaba almacenada, descongélela a temperatura ambiente y, a continuación, centrifugue a 280 × g durante 1 minuto. A continuación, pipetee para mezclar.
- 3. Etiquete una nueva placa de PCR de 96 pocillos como HYB1 (Hibridación 1).

Procedimiento

- 1. Transfiera 20 µl de cada genoteca de ADNc o ADNg de la placa de PCR de ALS al pocillo correspondiente en la placa de PCR HYB1.
- 2. Aplique sello adhesivo para placas en la placa de PCR de ALS y apártela. Selle los bordes y los pocillos completamente.
- 3. Inspeccione si hay precipitados en el TCB1. Si los hay, caliente nuevamente el tubo y agite en vórtex el tubo hasta que se disuelvan los cristales.
- 4. Añada 15 µl de TCB1 a cada pocillo de la genoteca en la placa de PCR HYB1.
- 5. Añada 10 µl de TCA1 a cada pocillo de la genoteca en la placa de PCR HYB1.
- 6. Añada las sondas.

No combine entre sí tipos diferentes de sondas. Añada solo un conjunto de sondas por pocillo.

- Pocillos de genoteca de ARN: 5 µl de OPR1 (tapa roja) a cada genoteca obtenida del ARN.
- Pocillos de genoteca de ADN TSO Comprehensive (UE): 5 µl de OPD2 (tapa blanca) a cada genoteca obtenida del ADN para el enriquecimiento TSO Comprehensive (UE).
- 7. Aplique sello adhesivo para placas en la placa de PCR HYB1.

PRECAUCIÓN

Asegúrese de sellar los bordes y los pocillos completamente para evitar que se produzca evaporación.

- 8. Agite a 1200 rpm durante 2 minutos.
- 9. Coloque la placa en el termociclador y ejecute el programa HYB1. Consulte *Programación de los termocicladores*, en la página 40.
- 10. Hibride a 57 °C durante un mínimo de 8 horas y hasta un máximo de 24 horas.
- 11. Vuelva a almacenar los reactivos de hibridación.
- 12. Almacene la placa de PCR de ALS a entre -25 °C y -15 °C durante un periodo máximo de 30 días.

Preparación de los pasos del protocolo

1. Al inicio del día 2, retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 26 TruSight Oncology Comp Enrichment (Refrigerate) Box (n.º de referencia 20031123)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
SMB (etiqueta	Entre 2 °C y 8 °C	Déjelo a temperatura ambiente durante	1.ª captura de las regiones de interés
azul oscuro)		30 minutos.	2.ª captura de las regiones de interés

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
ET2	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	1.ª captura de las regiones de interés
			2.ª captura de las regiones de interés
HP3	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	1.ª captura de las regiones de interés
			2.ª captura de las regiones de interés
			Normalización de las genotecas
TCB1	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Configuración de la segunda hibridación
RSB	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	2.ª captura de las regiones de interés
			Limpieza de genotecas enriquecidas
			amplificadas

Tabla 27 TruSight Oncology Comp Enrichment (Freeze) Box (n.º de referencia 20031121)

		•	
Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
EE2	Entre –25 °C y -15 °C	Descongele a temperatura ambiente.	 1.ª captura de las regiones de interés 2.ª captura de las regiones de interés Normalización de las genotecas
EEW	Entre –25 °C y -15 °C	Descongele a temperatura ambiente.	1.ª captura de las regiones de interés
TCA1	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Configuración de la segunda hibridación

Tabla 28 Ensayo Content Set Box (n.º de referencia 20031122)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
OPR1 (tapa roja)	Entre –25 °C y -15 °C	Descongele a temperatura ambiente.	Configuración de la segunda hibridación
OPD2 (tapa blanca)	Entre –25 °C y -15 °C	Descongele a temperatura ambiente.	Configuración de la segunda hibridación

1.ª captura de las regiones de interés

En este paso se usan las SMB para capturar sondas hibridadas en las regiones objetivo de interés. Las bolas se lavan tres veces con EEW. Las genotecas enriquecidas se eluyen con una mezcla de elución de EE2 + HP3 nueva y se neutralizan con ET2.

- 1. Precaliente una estación de incubación de micromuestras con un inserto de termobloque MIDI a 57 °C.
- 2. Prepare los siguientes reactivos.
 - EEW: Agite en vórtex para mezclar durante 1 minuto.
 - EE2: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - HP3: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - SMB: Asegúrese de que las bolas estén a temperatura ambiente durante 30 minutos.
 Asegúrese de usar SMB para este procedimiento, no SPB.

- ET2: Apártelo para usarlo en el procedimiento.
- 3. Prepare una mezcla de elución de EE2 + HP3 nueva en un tubo de microcentrífuga.

Tabla 29 Mezcla de elución de EE2 + HP3 para 1.ª captura de las regiones de interés

Componente de la mezcla de elución	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
EE2	114 µl	228 µl	456 µl	684 µl	1368 µl
HP3	6 µl	12 µl	24 µl	36 µl	72 µl

En esta tabla se incluye el excedente de volumen. Consulte *Manipulación de los reactivos*, en la página 31 para ver los cálculos.

- 4. Agite en vórtex la mezcla de elución de EE2 + HP3 y, a continuación, centrifugue brevemente. Apártela para el paso *Elución*, en la página 60.
- 5. Etiquete una nueva placa MIDI de 96 pocillos como CAP1 (Captura 1).
- 6. Configure el imán.

Procedimiento

Unión

- 1. Retire la placa de PCR de HYB1 del termociclador.
- 2. Centrifugue la placa de PCR de HYB1 a 280 × g durante 1 minuto.
- 3. Agite en vórtex las SMB durante 1 minuto para volver a suspender las bolas.
- 4. Justo después, añada 150 µl de SMB a cada pocillo de la genoteca para la placa MIDI de CAP1. Si se usa una cubeta para dispensar SPB, incluya un factor de excedente de 1,15 al alicuotar suficiente material por muestra. Deseche el material restante después de añadir las SMB a cada pocillo de la muestra.
- 5. Ajuste la pipeta a 50 µl y transfiera el volumen íntegro de cada genoteca de la placa de HYB1 PCR al pocillo correspondiente en la placa MIDI CAP1.
- 6. Deseche la placa de PCR de HYB1 vacía.
- Aplique sello adhesivo para placas en la placa MIDI de CAP1.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 8. Agite a 1800 rpm durante 2 minutos.
- 9. Incube en la estación de incubación de micromuestras precalentadas a 57 °C durante 25 minutos.
- 10. Coloque la placa en un soporte magnético durante 2 minutos.
- 11. Mientras mantiene la placa MIDI de CAP1 en el soporte magnético, use una pipeta P200 ajustada a 200 µl para retirar y desechar todo el sobrenadante sin alterar la microesfera de bolas.

PRECAUCIÓN

Justo después, continúe con el paso siguiente (*Lavado*, en la página 60). No deje que la microesfera de bolas se asiente durante un periodo de tiempo prolongado sin que haya líquido presente.

Lavado

- 1. Lave las bolas de la siguiente manera.
 - a. Retire la placa MIDI de CAP1 del soporte magnético.
 - b. Añada 200 µl de EEW a cada pocillo.
 - c. Ajuste el volumen de la pipeta a 150 µl y pipetee para mezclar un mínimo de 10 veces. Asegúrese de que todas las bolas se hayan resuspendido.

PRECAUCIÓN

Asegúrese de que no haya microesferas de bolas presentes; para ello, aspire con cuidado toda la solución de bolas del pocillo en la punta. A continuación, inspeccione la parte inferior de cada pocillo de una microesfera. Incline la punta de la pipeta hacia la microesfera de bolas durante los pasos de lavado para liberar la microesfera. Asegúrese de que la microesfera de bolas esté completamente dentro de la solución. La solución debe ser de color marrón oscuro y presentar una consistencia homogénea.

- d. Aplique sello adhesivo para placas en la placa MIDI de CAP1.
- e. Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- f. Agite a 1800 rpm durante 4 minutos.
- g. Incube en una estación de incubación de micromuestras a 57 °C durante 5 minutos.
- h. Coloque la placa en un soporte magnético durante 2 minutos.
- i. Manténgala en el soporte magnético y retire y deseche todo el sobrenadante de cada pocillo sin alterar la microesfera de bolas.
- 2. Lave las bolas una segunda vez.
- 3. Lave las bolas una tercera vez.
- Retire los residuos de sobrenadante de cada pocillo.
 Use una pipeta P20 con puntas finas.

Elución

- 1. Retire la placa MIDI de CAP1 del soporte magnético.
- 2. Agite en vórtex la mezcla de elución de EE2 + HP3 nueva y, a continuación, centrifugue brevemente.
- 3. Con cuidado, añada 17 µl de mezcla de elución de EE2 + HP3 a cada pocillo de la genoteca en la placa MIDI de CAP1.
- 4. Deseche la mezcla de elución de EE2 + HP3 restante.
- 5. Aplique sello adhesivo para placas en la placa MIDI de CAP1. Selle los bordes y los pocillos completamente.
- 6. Agite a 1800 rpm durante 2 minutos.
- 7. Coloque la placa en un soporte magnético durante 2 minutos.

- 8. Etiquete una nueva placa de PCR de 96 pocillos como ELU1 (Elución 1).
- 9. Agite ET2 en vórtex para mezclar y, a continuación, centrifuque brevemente.
- 10. Añada 5 µl de ET2 en cada pocillo de la genoteca correspondiente en la nueva placa de PCR de ELU1.
- 11. Transfiera con cuidado 15 µl de eluido de cada pocillo de la genoteca de la placa MIDI de CAP1 al pocillo correspondiente en la placa de PCR de ELU1.
- 12. Deseche la placa MIDI de CAP1 vacía.
- 13. Aplique sello adhesivo para placas en la placa de PCR de ELU1.
- 14. Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 15. Agite a 1200 rpm durante 2 minutos.
- 16. Vuelva a almacenar el EEW.

Configuración de la segunda hibridación

En este paso se unen regiones de interés de las genotecas enriquecidas de ADNc o ADNg con sondas de captura una segunda vez. La segunda hibridación garantiza una alta especificidad de las regiones capturadas. Para garantizar un enriquecimiento óptimo de las genotecas, realice el segundo paso de hibridación a 57 °C durante un periodo mínimo de 1,5 horas y hasta un máximo de 4 horas.

Preparación

- 1. Prepare los siguientes reactivos.
 - TCB1: Caliente el tubo a 37 °C durante 5 minutos. Agite en vórtex durante 10 segundos para mezclar y, a continuación, centrifugue brevemente.
 - TCA1: Agite en vórtex para mezclar y, a continuación, centrifuque brevemente.
 - OPR1: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - OPD2: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.

Procedimiento

- 1. Inspeccione si hay precipitados en el TCB1. Si los hay, caliente nuevamente el tubo y agite en vórtex hasta que se disuelvan los cristales.
- 2. Añada 15 µl de TCB1 a cada pocillo de la genoteca en la placa de PCR de ELU1.
- 3. Añada 10 µl de TCA1 a cada pocillo de la genoteca.
- 4. Añada las sondas.

No combine entre sí tipos diferentes de sondas.

- Pocillos de genoteca de ARN: 5 µl de OPR1 (tapa roja) a cada genoteca obtenida del ARN.
- Pocillos de genoteca de ADN TSO Comprehensive (UE): 5 µl de OPD2 (tapa blanca) a cada genoteca obtenida del ADN para el enriquecimiento TSO Comprehensive (UE).
- 5. Aplique sello adhesivo para placas en la placa de PCR de ELU1.

Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.

- 6. Agite a 1200 rpm durante 2 minutos.
- 7. Coloque la placa en un termociclador y ejecute el programa HYB2. Consulte *Programación de los termocicladores*, en la página 40.
- 8. Hibride a 57 °C para un mínimo de 1,5 horas y hasta un máximo de 4 horas.
- 9. Vuelva a almacenar los reactivos de hibridación.

2.ª captura de las regiones de interés

En este paso se usan las SMB para capturar sondas hibridadas en las regiones objetivo de interés. Las bolas se lavan una vez en RSB. Las genotecas enriquecidas se eluyen con una mezcla de elución de EE2 + HP3 nueva y se neutralizan con ET2.

Preparación

- 1. Precaliente una estación de incubación de micromuestras con inserto de termobloque MIDI a 57 °C.
- 2. Prepare los siguientes reactivos.
 - EE2: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - HP3: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - SMB: Asegúrese de que las bolas estén a temperatura ambiente durante 30 minutos. Asegúrese de usar **SMB** para este procedimiento, no SPB.
 - RSB: Apártelo para usarlo en el procedimiento.
 - ET2: Apártelo para usarlo en el procedimiento.
- 3. Prepare una mezcla de elución de EE2 + HP3 nueva en un tubo de microcentrífuga.

Tabla 30 Mezcla de elución de EE2 + HP3 para 2.ª captura de las regiones de interés

Componente de la mezcla de elución	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
EE2	114 µl	228 µl	456 µl	684 µl	1368 µl
HP3	6 µl	12 µl	24 µl	36 µl	72 µl

En esta tabla se incluye el excedente de volumen. Consulte *Manipulación de los reactivos*, en la página 31 para ver los cálculos.

- 4. Agite en vórtex para mezclar y, a continuación, centrifugue brevemente. Apártela para el paso *Elución*, en la página 64.
- 5. Etiquete una nueva placa MIDI de 96 pocillos como CAP2 (Captura 2).
- 6. Configure el imán.

Procedimiento

Unión

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

- 1. Retire la placa de PCR de ELU1 del termociclador.
- 2. Centrifugue la placa de PCR de ELU1 a 280 × g durante 1 minuto.
- 3. Agite en vórtex las SMB durante 1 minuto para volver a suspender las bolas.
- 4. Justo después, añada 150 µl de SMB a cada pocillo de la genoteca para la placa MIDI de CAP2. Si se usa una cubeta para dispensar SPB, incluya un factor de excedente de 1,15 al alicuotar suficiente material por muestra. Deseche el material restante después de añadir las SMB a cada pocillo de la muestra.
- 5. Ajuste la pipeta a 50 µl y transfiera el volumen íntegro de cada genoteca de la placa de PCR de ELU1 al pocillo correspondiente de la placa MIDI de CAP2.
- 6. Deseche la placa de PCR de ELU1 vacía.
- Aplique sello adhesivo para placas en la placa MIDI de CAP2.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 8. Agite a 1800 rpm durante 2 minutos.
- 9. Incube en una estación de incubación de micromuestras a 57 °C durante 25 minutos.
 - NOTA Si continúa con la *Amplificación de las genotecas enriquecidas*, en la página 65, siga las instrucciones de descongelación para los reactivos en la sección Preparación de los pasos del protocolo.
- 10. Coloque la placa en un soporte magnético durante 2 minutos.
- 11. Mantenga la placa MIDI de CAP2 en el soporte magnético y use una pipeta P200 ajustada a 200 µl para retirar y desechar todo el sobrenadante de cada pocillo de la genoteca sin alterar la microesfera de bolas.

PRECAUCIÓN

Justo después, continúe con el paso siguiente (*Lavado*, en la página 63). No deje que la microesfera de bolas se asiente durante un periodo de tiempo prolongado sin que haya líquido presente.

Lavado

- 1. Retire la placa MIDI de CAP2 del soporte magnético.
- 2. Invierta el RSB o agítelo en vórtex para mezclar.
- 3. Añada 200 µl de RSB a cada pocillo.
- 4. Aplique sello adhesivo para placas en la placa MIDI de CAP2. Selle los bordes y los pocillos completamente.
- 5. Agite a 1800 rpm durante 4 minutos.
- 6. Coloque la placa en el soporte magnético durante 2 minutos.
- 7. Mantenga la placa MIDI de CAP2 en el soporte magnético y retire y deseche todo el sobrenadante sin alterar la microesfera de bolas.
- Retire los residuos de sobrenadante de cada pocillo.
 Use una pipeta P20 con puntas finas.

Elución

- Retire la placa MIDI de CAP2 del soporte magnético.
- 2. Agite en vórtex la mezcla de elución de EE2 + HP3 nueva y, a continuación, centrifugue brevemente.
- 3. Añada 22 µl de mezcla de elución de EE2 + HP3 a cada pocillo de la genoteca en la placa MIDI de CAP2.
- 4. Deseche la mezcla de elución de EE2 + HP3 restante.
- 5. Aplique sello adhesivo para placas en la placa MIDI de CAP2. Selle los bordes y los pocillos completamente.
- 6. Agite a 1800 rpm durante 2 minutos.
- 7. Coloque la placa en un soporte magnético durante 2 minutos.
- 8. Etiquete una nueva placa de PCR de 96 pocillos como ELU2 (Elución 2).
- 9. Agite ET2 en vórtex para mezclar y, a continuación, centrifugue brevemente.
- 10. Añada 5 µl de ET2 en cada pocillo de la genoteca correspondiente en la nueva placa de PCR de ELU2.
- 11. Transfiera con cuidado 20 µl de eluido de cada pocillo de la genoteca de la placa MIDI de CAP2 al pocillo correspondiente en la placa de PCR de ELU2.
- 12. Deseche la placa MIDI de CAP2 vacía.
- Aplique sello adhesivo para placas en la placa de PCR de ELU2.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 14. Agite a 1200 rpm durante 2 minutos.
- 15. Vuelva a almacenar las SMB, la EE2, el HP3 y el ET2.

PUNTO DE DETENCIÓN DE SEGURIDAD

Si debe detener el procedimiento, centrifugue la placa de PCR de ELU2 a 280 × g durante 1 minuto y almacénela a entre -25 °C y -15 °C durante un periodo máximo de 7 días. Vuelva a almacenar el RSB.

Preparación de los pasos del protocolo

- 1. Prepare un cubo de hielo.
- 2. Retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 31 TruSight Oncology Comp Enrichment (Freeze) Box (n.º de referencia 20031121)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
PPC3	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Amplificación de las genotecas enriquecidas
EPM	Entre -25 °C y -15 °C	Mantenga en hielo.	Amplificación de las genotecas enriquecidas

Tabla 32 TruSight Oncology Comp Enrichment (Refrigerate) Box (n.º de referencia 20031123)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
SPB (etiqueta verde claro)	Entre 2 °C y 8 °C	Déjelo a temperatura ambiente durante 30 minutos.	Limpieza de genotecas enriquecidas amplificadas
RSB	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Limpieza de genotecas enriquecidas amplificadas Preparación para la secuenciación

Amplificación de las genotecas enriquecidas

En este paso se usan cebadores para amplificar las genotecas enriquecidas.

Preparación

1. Si la placa de ELU2 estaba almacenada, descongélela a temperatura ambiente y, a continuación, centrifugue a 280 × g durante 1 minuto.

Procedimiento

- 1. Agite en vórtex la PPC3 para mezclar y, a continuación, centrifugue brevemente.
- 2. Añada 5 µl de PPC3 en cada pocillo de genoteca de la placa de PCR de ELU2.
- 3. Agite en vórtex la EPM para mezclar durante 5 segundos y, a continuación, centrifugue brevemente.
- 4. Añada 20 μl de EPM a cada pocillo de genoteca.
- Aplique sello adhesivo para placas en la placa de PCR de ELU2.
 Selle los bordes y los pocillos completamente para evitar que se produzca evaporación.
- 6. Agite a 1200 rpm durante 2 minutos.
- 7. Coloque la placa en un termociclador y ejecute el programa EL-PCR. Consulte *Programación de los termocicladores*, en la página 40.
 - Nota Si continúa con la *Normalización de las genotecas*, en la página 68, siga las instrucciones de descongelación en la sección Preparación de pasos del protocolo.
- 8. Vuelva a almacenar la PPC3 y la EPM.

Limpieza de genotecas enriquecidas amplificadas

En este paso se usan SPB para purificar las genotecas enriquecidas de componentes de reacción no deseados. Las bolas se lavan dos veces con etanol al 80 % nuevo. Las genotecas se eluyen con RSB.

Preparación

1. Prepare los siguientes reactivos.

- SPB: Asegúrese de que las bolas estén a temperatura ambiente durante 30 minutos. Asegúrese de usar
 SPB para este procedimiento, no SMB.
- RSB: Apártelo para usarlo en el procedimiento.
- 2. Prepare etanol al 80 % nuevo en un tubo cónico de 15 ml o 50 ml.

Tabla 33 Prepare etanol al 80 % nuevo.

Reactivo	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
Alcohol de etanol al 100 % puro	2 ml	4 ml	8 ml	12 ml	24 ml
Agua sin ribonucleasa/desoxirribonucleasa	500 µl	1 ml	2 ml	3 ml	6 ml

- 3. Agite en vórtex EtOH al 80 % nuevo para mezclar.
- 4. Etiquete una nueva placa MIDI de 96 pocillos como BIND2 (Limpieza de placa de unión).
- 5. Configure el imán.

Procedimiento

Unión

- 1. Retire la placa de PCR de ELU2 del termociclador.
- 2. Centrifugue la placa de PCR de ELU2 a 280 × g durante 1 minuto.
- 3. Agite en vórtex las SPB durante 1 minuto para volver a suspender las bolas.
- 4. Justo después, añada 110 µl de SPB a cada pocillo de la genoteca para la placa MIDI de BIND2.
- 5. Transfiera 50 µl de cada genoteca de la placa de PCR de ELU2 al pocillo correspondiente de la placa MIDI de BIND2.
- 6. Deseche la placa de PCR de ELU2 vacía.
- 7. Aplique sello adhesivo para placas en la placa MIDI de BIND2. Selle los bordes y los pocillos completamente.
- 8. Agite a 1800 rpm durante 2 minutos.
- 9. Incube a temperatura ambiente durante 5 minutos.
- 10. Coloque la placa en un soporte magnético durante 5 minutos.
- 11. Use una pipeta P200 ajustada en 200 µl para retirar y desechar *todo* el sobrenadante de cada pocillo de la genoteca sin alterar la microesfera de bolas.

Lavado

- 1. Lave las bolas de la siguiente manera:
 - a. Mantenga en el soporte magnético y añada 200 µl de EtOH al 80 % nuevo a cada pocillo.
 - b. Espere 30 segundos.
 - c. Retire y deseche todo el sobrenadante de cada pocillo de muestra sin alterar la microesfera de bolas.
- 2. Lave las bolas una segunda vez.
- Retire los residuos de EtOH de cada pocillo.
 Use una pipeta P20 con puntas finas.
- 4. Deseche el EtOH al 80 % sin usar.

Elución

- 1. Retire la placa MIDI de BIND2 del soporte magnético.
- 2. Invierta el RSB o agítelo en vórtex para mezclarlo.
- 3. Añada 32 µl de RSB a cada pocillo de la genoteca.
- 4. Aplique sello adhesivo para placas en la placa MIDI de BIND2. Selle los bordes y los pocillos completamente.
- 5. Agite a 1800 rpm durante 2 minutos.
- 6. Incube a temperatura ambiente durante 2 minutos.
- 7. Coloque la placa en un soporte magnético durante 2 minutos.
- 8. Etiquete una nueva placa de PCR de 96 pocillos como PL (genotecas purificadas).
- 9. Transfiera 30 µl de cada eluido de la placa MIDI de BIND2 al pocillo correspondiente de la placa de PCR de PL.
- 10. Deseche la placa MIDI de BIND2 vacía.
- 11. Aplique sello adhesivo para placas en la placa de PCR de PL.
- 12. Vuelva a almacenar las SPB.

PUNTO DE DETENCIÓN DE SEGURIDAD

Si debe detener el procedimiento, centrifugue la placa de PCR de PL a 280 × g durante 1 minuto y almacénela a entre -25 °C y -15 °C durante un periodo máximo de 30 días. Vuelva a almacenar el RSB.

Preparación de los pasos del protocolo

Retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 34 TruSight Oncology Comp Enrichment (Freeze) Box (n.º de referencia 20031121)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
LNA1	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Normalización de las genotecas
EE2	Entre -25 °C y -15 °C	Descongele a temperatura ambiente.	Normalización de las genotecas

Tabla 35 TruSight Oncology Comp Enrichment (Refrigerate) Box (n.º de referencia 20031123)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
LNB1	Entre 2 °C y 8 °C	Déjelo a temperatura ambiente durante 30 minutos.	Normalización de las genotecas
HP3	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Normalización de las genotecas Preparación para la secuenciación
LNW1	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Normalización de las genotecas
LNS1	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Normalización de las genotecas

^{2.} Si ese mismo día va a continuar con la *Preparación para la secuenciación*, en la página 73, siga las instrucciones de descongelación que aparecen en la sección Preparación de pasos del protocolo.

Normalización de las genotecas

Este proceso usa LNB1 más aditivos (LNA1) para normalizar la cantidad de cada genoteca para garantizar una representación de genotecas uniforme en las genotecas agrupadas. Las bolas se lavan dos veces con LNW1. Las genotecas se eluyen con una mezcla de elución de EE2 + HP3 nueva y se neutralizan con LNS1.

- 1. Prepare los siguientes reactivos.
 - LNB1: Asequrese de que las bolas estén a temperatura ambiente durante 30 minutos.
 - LNA1: Agite en vórtex para mezclar.
 - EE2: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - HP3: Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
 - LNW1: Agite en vórtex para mezclar. Apártelo para usarlo en el procedimiento.
 - LNS1: Agite en vórtex para mezclar. Apártelo para usarlo en el procedimiento.
- 2. Agite en vórtex las LNB1 durante 1 minuto para volver a suspender las bolas. Invierta el tubo de LNB1 para asegurarse de que todas las bolas se hayan resuspendido.
- 3. Con ayuda de un P1000 ajustado a 800 µl, pipetee LNB1 hacia arriba y hacia abajo 10 veces para garantizar la resuspensión.

4. Justo después, prepare una mezcla maestra de LNA1 + LNB1 nueva en un tubo cónico.

PRECAUCIÓN

Resuspenda completamente la microesfera de bolas LNB1 en la parte inferior del tubo para evitar que se produzca una densidad de grupos inestable.

Tabla 36 Mezcla maestra de LNA1 + LNB1

Componente de la mezcla maestra	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
LNA1	305 µl	610 µl	1219 µl	1829 µl	3658 µl
LNB1	55 µl	110 µl	221 µl	331 µl	662 µI

En esta tabla se incluye el excedente de volumen. Consulte *Manipulación de los reactivos*, en la página 31 para ver los cálculos.

- 5. Agite en vórtex la mezcla maestra de LNA1 + LNB1. Apártela para el paso de *Unión*, en la página 69.
- 6. Prepare una mezcla de elución de EE2 + HP3 nueva en un tubo de microcentrífuga.

Tabla 37 Mezcla de elución de EE2 + HP3 para normalizar genotecas

Componente de la mezcla de elución	4 genotecas	8 genotecas	16 genotecas	24 genotecas	48 genotecas
EE2	152 µl	304 µl	608 µl	912 µl	1824 µl
HP3	8 µl	16 µI	32 µl	48 µl	96 µl

En esta tabla se incluye el excedente de volumen. Consulte *Manipulación de los reactivos*, en la página 31 para ver los cálculos.

- 7. Agite en vórtex la mezcla de elución nueva y, a continuación, centrifugue brevemente. Apártela para el paso *Elución*, en la página 70.
- 8. Si la placa de PCR de PL estaba almacenada, descongélela a temperatura ambiente, centrifugue a 280 × g durante 1 minuto y, a continuación, pipetee para mezclar.
- 9. Etiquete una nueva placa MIDI de 96 pocillos como BBN (Normalización basada en bolas).
- 10. Configure el imán.

Procedimiento

Unión

- Agite en vórtex la mezcla maestra de LNA1 + LNB1.
- 2. Justo después, añada 45 μl de mezcla maestra de LNA1 + LNB1 a cada pocillo de la genoteca de la placa MIDI de BBN.
- 3. Deseche la mezcla maestra de LNA1 + LNB1 restante.
- 4. Añada 20 μl de cada genoteca de la placa de PCR de PL en el pocillo correspondiente de la placa MIDI de BBN.
- 5. Aplique sello adhesivo para placas en la placa MIDI de BBN.

Selle los bordes y los pocillos completamente.

- 6. Agite a 1800 rpm durante 30 minutos.
- 7. Aplique sello adhesivo para placas en la placa de PCR de PL y vuelva a almacenarla.
- 8. Coloque la placa en un soporte magnético durante 2 minutos.
- 9. Manténgala en un soporte magnético y utilice una pipeta P200 para retirar y desechar todo el sobrenadante de cada pocillo sin alterar la microesfera de bolas.

Lavado

- 1. Lave las bolas de la siguiente manera.
 - a. Retire la placa MIDI de BBN del soporte magnético.
 - b. Añada 45 µl de LNW1 a cada pocillo de la genoteca.
 - c. Aplique sello adhesivo para placas en la placa MIDI de BBN.
 - d. Selle los bordes y los pocillos completamente.
 - e. Agite a 1800 rpm durante 5 minutos.
 - f. Coloque la placa en un soporte magnético durante 2 minutos.
 - g. Retire y deseche todo el sobrenadante de cada pocillo sin alterar la microesfera de bolas.
- 2. Lave las bolas una segunda vez.
- 3. Retire los residuos de sobrenadante de cada pocillo. Use una pipeta P20 con puntas finas.

Elución

- 1. Retire la placa MIDI de BBN del soporte magnético.
- 2. Agite en vórtex la mezcla de elución de EE2 + HP3 nueva y, a continuación, centrifugue brevemente.
- 3. Añada 32 µl de solución de EE2 + HP3 a cada pocillo de la genoteca de la placa MIDI de BBN.
- 4. Deseche la mezcla de elución restante.
- 5. Aplique sello adhesivo para placas en la placa MIDI de BBN. Selle los bordes y los pocillos completamente.
- 6. Agite a 1800 rpm durante 2 minutos.
- 7. Coloque la placa en un soporte magnético durante 2 minutos.
- 8. Etiquete una nueva placa de PCR de 96 pocillos como NL (genotecas normalizadas).
- 9. Transfiera con cuidado 30 µl de eluido de cada pocillo de la genoteca de la placa MIDI de BBN al pocillo correspondiente en la placa de PCR de NL.

PRECAUCIÓN

Si se aspiran las bolas con las puntas de las pipetas, dispense las bolas en la placa con el soporte magnético y espere hasta que el líquido se vuelva transparente (aproximadamente 2 minutos) antes de pasar al siguiente paso del procedimiento.

- 10. Deseche la placa MIDI de BBN vacía.
- 11. Agite en vórtex el LNS1 para mezclar.
- 12. Añada 30 µl de LNS1 en cada pocillo de la genoteca en la nueva placa de PCR de NL.
- 13. Pipetee para mezclar cinco veces.
- 14. Aplique sello adhesivo para placas en la placa de PCR de NL. Selle los bordes y los pocillos completamente.
- 15. Vuelva a almacenar las LNB1, los LNA1, la EE2, el LNW1 y el LNS1.

PUNTO DE DETENCIÓN DE SEGURIDAD

Si debe detener el procedimiento, centrifugue la placa de PCR de NL a 280 \times g durante 1 minuto y almacénela a entre -25 $^{\circ}$ C y -15 $^{\circ}$ C durante un periodo máximo de 30 días.

Preparación de los pasos del protocolo

Empiece la preparación de los consumibles de secuenciación a partir de NextSeq 550Dx High Output Reagent Kit v2.5 (300 cycles) (n.º de referencia 20028871) como mínimo una hora antes de su uso.

- 1. Retire el tampón de dilución de genotecas (HT1) del almacenamiento a entre –25 °C y –15 °C, descongele a temperatura ambiente y, a continuación, póngalo en hielo.
- 2. Siga las instrucciones de preparación de la *Guía de referencia de NextSeq 550Dx Instrument (n.º de documento 100000009513)* para obtener información sobre otros consumibles del kit.
 - NextSeq 550Dx High Output Reagent Cartridge v2 (300 cycles)
 - NextSeq 550Dx Buffer Cartridge v2 (300 cycles)
 - NextSeg 550Dx High Output Flow Cell Cartridge v2.5 (300 cycles)
- 3. Retire el tubo de reactivos de la caja y siga las instrucciones de descongelación.

Tabla 38 TruSight Oncology Comp Enrichment (Freeze) Box (n.º de referencia 20031121)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
PhiX Internal Control (PX3 o PhiX)	Entre -25 °C y -15 °C	Descongele a temperatura ambiente. Mantenga en hielo.	Preparación para la secuenciación

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Tabla 39 TruSight Oncology Comp Enrichment (Refrigerate) Box (n.º de referencia 20031123)

Reactivo	Almacenamiento	Instrucciones de descongelación	Paso del protocolo
HP3	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Preparación para la secuenciación
RSB (etiqueta rosa)	Entre 2 °C y 8 °C	Deje que alcance la temperatura ambiente.	Preparación para la secuenciación

Preparación para la secuenciación

Preparación

- 1. Revise las directrices para el Número de genotecas y selección de índices, en la página 34.
- 2. Etiquete un tubo de microcentrífuga como dHP3 (HP3 diluido).
- 3. Etiquete un tubo de microcentrífuga como dPhiX (PhiX diluido).
- 4. Precaliente un termobloque a 96 °C para los tubos de microcentrífuga.
- 5. Prepare un cubo de hielo.

Desnaturalización y dilución de control PhiX

- 1. Agite en vórtex el HP3 para mezclar y, a continuación, centrifugue brevemente.
- 2. Combine los volúmenes siguientes en el tubo de microcentrífuga dHP3.
 - 10 µl de HP3
 - 190 µl de agua-sin ribonucleasa/desoxirribonucleasa
- 3. Agite en vórtex el dHP3 para mezclar y, a continuación, centrifugue brevemente.
- 4. Invierta el RSB o agítelo en vórtex para mezclar.
- 5. Agite en vórtex el control PhiX para mezclar y, a continuación, centrifugue brevemente.
- 6. Combine los volúmenes siguientes en el tubo de microcentrífuga dPhiX.
 - 8 ul de RSB
 - 2 µl de control PhiX
- 7. Añada 10 µl de dHP3 al tubo dPhiX.
- 8. Deseche el tubo dHP3.
- 9. Agite en vórtex el tubo dPhiX para mezclar y, a continuación, centrifugue brevemente.
- 10. Incube el dPhiX a temperatura ambiente durante 5 minutos para desnaturalizar.
- 11. Agite en vórtex el HT1 para mezclar.
- 12. Justo después, añada 980 µl de HT1 enfriado previamente al dPhiX.
- 13. Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
- 14. Coloque el dPhiX en hielo hasta el uso en la preparación para la segunda dilución. La concentración final es un dPhiX de 20 pM.
- 15. Vuelva a almacenar el PhiX, HP3 y RSB.

Agrupación y desnaturalización de genotecas para TSO Comprehensive (UE)

1. Si la placa de PCR de NL estaba almacenada, descongélela a temperatura ambiente y, a continuación, centrifugue a 280 × g durante 1 minuto.

2. Con ayuda de una pipeta multicanal ajustada a 30 μl, pipetee-mezcle con cuidado las genotecas en la placa de PCR de NL cinco veces.

Use puntas nuevas para cada genoteca.

PRECAUCIÓN

Asegúrese de mezclar bien las genotecas para un rendimiento óptimo.

- 3. Seleccione una de las siguientes opciones para agrupar, desnaturalizar y diluir las genotecas.
 - Opción n.º 1: Secuencie las genotecas obtenidas de las muestras de ARN y las muestras de ADN simultáneamente. Consulte *Opción n.º 1: Genotecas de ADN y ARN juntas*, en la página 74.
 - Opción n.º 2: Secuencie las genotecas obtenidas solamente de las muestras de ADN. Consulte *Opción n.º 2: Genotecas de ADN solo*, en la página 75.
 - Opción n.º 3: Secuencie las genotecas obtenidas solamente de las muestras de ARN. Consulte *Opción n.º 3: Genotecas de ARN solo*, en la página 76.

Opción n.º 1: Genotecas de ADN y ARN juntas

- 1. Etiquete un tubo de microcentrífuga como PRL (genotecas de ARN agrupadas).
- 2. Etiquete un tubo de microcentrífuga como PDL (genotecas de ADN agrupadas).
- 3. Transfiera 10 µl de cada genoteca de ARN normalizada (ADNc) desde la placa de NL hasta el tubo PRL. No agrupe dos genotecas con el mismo cebador de índice.
- Transfiera 10 μl de cada genoteca de ADN normalizada desde la placa de NL hasta el tubo PDL.
 No agrupe dos genotecas con el mismo cebador de índice.
- 5. Aplique sello adhesivo para placas en la placa de PCR de NL. Selle los bordes y los pocillos completamente.
- 6. Agite en vórtex los tubos PRL y PDL para mezclar.
- 7. Centrifuque brevemente los tubos PRL y PDL.
- 8. Incube los tubos PRL y PDL en un termobloque a 96 °C durante 2 minutos.
- 9. Coloque los tubos PRL y PDL en hielo durante 5 minutos.
- 10. Agite en vórtex los tubos PRL y PDL para mezclar y, a continuación, centrifuque brevemente.
- 11. Vuelva a poner en hielo los tubos PRL y PDL.

Preparación de la primera dilución

- 1. Etiquete un tubo de microcentrifugado como DIL1 (Dilución 1).
- 2. Transfiera 20 µl de PDL al tubo DIL1 vacío.
- 3. Añada 5 µl de PRL a DIL1.
- 4. Deseche los tubos PDL y PRL.
- 5. Añada 475 µl de HT1 preenfriado al tubo DIL1 (dilución 1:20).

6. Agite en vórtex el tubo DIL1 para mezclar y, a continuación, centrifugue brevemente.

Preparación de la segunda dilución

- 1. Etiquete un tubo de microcentrífuga de 2,0 ml como DIL2 (Dilución 2).
- 2. Transfiera 40 µl de DIL1 al tubo DIL2 vacío.
- 3. Deseche el tubo DIL1.
- 4. Añada 1660 µl de HT1 preenfriado al tubo DIL2 (dilución 1:850).
- 5. Agite en vórtex un dPhiX de 20 pM preparado para mezclar y, a continuación, centrifuque brevemente.
- 6. Añada 2,5 µl de dPhiX de 20 pM preparado al tubo DIL2.
- 7. Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
- 8. Cargue 1300 µl de DIL2 en el NextSeq 550Dx High Output Reagent Cartridge v2 (300 cycles) descongelado Para obtener más información, consulte *Guía de referencia del instrumento NextSeq 550Dx (n.º de documento 1000000009513*).
- 9. Deseche el tubo DIL2.
- 10. Centrifugue la placa de PCR de NL a 280 × g durante 1 minuto y almacénela a entre –25 °C y –15 °C durante un periodo máximo de 30 días.
- 11. Proceda a realizar la secuenciación.
 - Para obtener más información, consulte *Guía de referencia del instrumento NextSeq 550Dx (n.º de documento 100000009513)*.

Opción n.º 2: Genotecas de ADN solo

- 1. Etiquete un tubo de microcentrífuga con cierre de rosca como PDL (genotecas de ADN agrupadas).
- 2. Transfiera 10 µl de cada genoteca de ADN normalizada desde la placa de NL hasta el tubo PDL. No agrupe dos genotecas con el mismo cebador de índice.
- 3. Aplique sello adhesivo para placas en la placa de PCR de NL. Selle los bordes y los pocillos completamente.
- 4. Aplique Microseal "B" a la placa de PCR NL. Selle los bordes y los pocillos completamente.
- 5. Agite en vórtex el tubo PDL para mezclar.
- 6. Centrifugue brevemente el tubo PDL.
- 7. Incube el tubo PDL en un termoblogue a 96 °C durante 2 minutos.
- 8. Coloque el tubo PDL en hielo durante 5 minutos.
- 9. Agite en vórtex el tubo PDL para mezclar y, a continuación, centrifuque brevemente.
- 10. Vuelva a poner en hielo el tubo PDL.

Preparación de la primera dilución

- 1. Etiquete un tubo de microcentrifugado como DIL1 (Dilución 1).
- 2. Transfiera 10 µl de PDL al tubo DIL1 vacío.
- 3. Deseche el tubo PDL.
- 4. Añada 190 μl de HT1 preenfriado al tubo DIL1 (dilución 1:20).
- 5. Agite en vórtex el DIL1 para mezclar y, a continuación, centrifugue brevemente.

Preparación de la segunda dilución

- 1. Etiquete un tubo de microcentrífuga de 2,0 ml como DIL2 (Dilución 2).
- 2. Transfiera 40 µl de DIL1 al tubo DIL2 vacío.
- 3. Deseche el tubo DIL1.
- 4. Añada 1660 µl de HT1 preenfriado al tubo DIL2 (dilución 1:850).
- 5. Agite en vórtex dPhiX de 20 pM preparado y, a continuación, centrifugue brevemente.
- 6. Añada 2,5 µl de dPhiX de 20 pM preparado al tubo DIL2.
- 7. Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
- 8. Cargue 1300 µl de DIL2 en el NextSeq 550Dx High Output Reagent Cartridge v2 (300 cycles) descongelado. Para obtener más información, consulte *Guía de referencia del instrumento NextSeq 550Dx (n.º de documento 1000000009513*).
- 9. Deseche el tubo DIL2.
- 10. Centrifugue la placa de PCR de NL a 280 \times g durante 1 minuto y, a continuación, almacénela a entre -25 °C y -15 °C durante un periodo máximo de 30 días.
- 11. Proceda a realizar la secuenciación.
 - Para obtener más información, consulte *Guía de referencia del instrumento NextSeq 550Dx (n.º de documento 100000009513)*.

Opción n.º 3: Genotecas de ARN solo

- 1. Etiquete un tubo de microcentrífuga como PRL (genotecas de ARN agrupadas).
- 2. Transfiera 10 µl de cada genoteca de ARN normalizada (ADNc) desde la placa de NL hasta el tubo PRL. No agrupe dos genotecas con el mismo cebador de índice.
- Aplique sello adhesivo para placas en la placa de PCR de NL.
 Selle los bordes y los pocillos completamente.
- 4. Agite en vórtex el tubo PRL para mezclar.
- 5. Centrifugue brevemente el tubo PRL.
- 6. Incube el tubo PRL en un termobloque a 96 °C durante 2 minutos.
- 7. Coloque el tubo PRL en hielo durante 5 minutos.

- 8. Agite en vórtex el tubo PRL para mezclar y, a continuación, centrifugue brevemente.
- 9. Vuelva a poner en hielo el tubo PRL.

Preparación de la primera dilución

- 1. Etiquete un tubo de microcentrifugado como DIL1 (Dilución 1).
- 2. Transfiera 10 µl de PRL al tubo DIL1 vacío.
- 3. Deseche el tubo PRL.
- 4. Añada 190 μl de HT1 preenfriado al tubo DIL1 (dilución 1:20).
- 5. Agite en vórtex el DIL1 para mezclar y, a continuación, centrifugue brevemente.

Preparación de la segunda dilución

- 1. Etiquete un tubo de microcentrífuga de 2,0 ml como DIL2 (Dilución 2).
- 2. Transfiera 40 µl de DIL1 al tubo DIL2 vacío.
- 3. Deseche el tubo DIL1.
- 4. Añada 1646 µl de HT1 preenfriado al tubo DIL2 (dilución 1:843).
- 5. Agite en vórtex dPhiX de 20 pM preparado y, a continuación, centrifuque brevemente.
- 6. Añada 16,7 µl de dPhiX de 20 pM preparado al tubo DIL2.
- 7. Agite en vórtex para mezclar y, a continuación, centrifugue brevemente.
- 8. Cargue 1300 µl de DIL2 en el NextSeq 550Dx High Output Reagent Cartridge v2 (300 cycles) descongelado. Para obtener más información, consulte *Guía de referencia del instrumento NextSeq 550Dx (n.º de documento 1000000009513*).
- 9. Deseche el tubo DIL2.
- 10. Centrifugue la placa de PCR de NL a 280 × g durante 1 minuto y almacénela a entre –25 °C y –15 °C durante un periodo máximo de 30 días.
- 11. Proceda a realizar la secuenciación.
 - Para obtener más información, consulte *Guía de referencia del instrumento NextSeq 550Dx (n.º de documento 1000000009513)*.

Interpretación de resultados

Los resultados de la secuenciación del ensayo de TSO Comprehensive (UE) se notifican para cada muestra de forma individual en un informe en PDF y un informe en JSON. También se genera a nivel de muestra un Informe de baja profundidad (LowDepthReport.tsv).

A nivel de experimento, se generan los siguientes archivos de resultados:

- ControlOutput.tsv
- MetricsOutput.tsv

En los informes en PDF y en JSON solo aparecen las variantes que superan el control de calidad.

Para obtener información detallada sobre el análisis, consulte Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661).

Resultados de la prueba diagnóstica acompañante

Para cada uso previsto de la prueba diagnóstica acompañante (CDx) existen tres posibles resultados:

- Positivo: Se detecta una variante y se clasifica como nivel 1 (CDx).
- Sin detección: No se detectan variantes ni biomarcadores asociados con el uso previsto de la CDx en la muestra. El tipo de tumor seleccionado para la muestra es adecuado para la CDx.
- Sin resultado: No es posible determinar un estado de variante por uno o más de los siguientes motivos:
 - El uso previsto de la CDx no era pertinente para la muestra analizada porque el tipo de tumor seleccionado para la muestra no es adecuado para el tipo de tumor de la CDx.
 - El experimento de secuenciación no ha superado las especificaciones del control de calidad.
 - La genoteca no ha superado las especificaciones del control de calidad requeridas.
 - El experimento no se ha hecho con el ácido nucleico correcto.

Todos los resultados del uso previsto de la CDx se dan a conocer en la sección Resultados de prueba diagnóstica acompañante del informe en JSON. En la sección Resultados de prueba diagnóstica acompañante del informe en PDF solo se citan los usos previstos con un resultado positivo.

Variantes de creación de perfiles tumorales

TSO Comprehensive (UE) se ha diseñado para informar de variantes somáticas cuando se informa de variantes con pruebas de importancia clínica o variantes con posible importancia clínica. El software de ensayo TSO Comprehensive (UE) utiliza una base de conocimiento (KB) que determina si cada variante detectada y elegible (Tabla 2) tiene importancia clínica o puede tener importancia clínica, basándose en pruebas de asociaciones con el tratamiento, el diagnóstico o el pronóstico. La KB también tiene en cuenta si se han establecido asociaciones (o no) en el tipo de tumor analizado. Las asociaciones de susceptibilidad o riesgo de cáncer no se incluyen en la KB. Se han eliminado los polimorfismos comunes.

En el caso de las variantes de creación de perfiles tumorales, los resultados positivos se clasifican en Hallazgos genómicos con indicios de importancia clínica o Hallazgos genómicos con posible importancia clínica según la KB instalada y el tipo de tumor identificado.

Los fallos en el control de calidad hacen que no haya resultados para los tipos de variantes que son relevantes para el criterio de medición de control de calidad no superado. Consulte Tabla 40 y Tabla 41 para obtener más información. Las posiciones de creación de perfiles tumorales con una profundidad insuficiente aparecen citadas en el Low Depth Report (Informe de baja profundidad) en lugar de citarse en el informe TSO Comprehensive (UE).

Control de calidad

- Para obtener información sobre la cuantificación de ácidos nucleicos y los requisitos mínimos de materiales de entrada, consulte *Extracción, cuantificación y almacenamiento de ácido nucleico*, en la página 24.
- El experimento de secuenciación y la validez de la muestra se determinan automáticamente, y los informes sobre ellos se elaboran mediante el módulo de análisis de Módulo de análisis de TSO Comprehensive (UE). Para obtener información detallada sobre el análisis, consulte Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661).

Tabla 40 Criterios de medición de CC de los resultados del informe de TSO Comprehensive (UE)

Tipo de resultado	Criterio de medición	Especificación	Descripción	Repercusión de no cumplir la especificación*	
Experimento de secuenciación	PCT_PF_READS (%)	≥80,0	Porcentaje de lecturas que pasan el filtro (PF).	Experimento de secuenciación	
	PCT_Q30_R1 (%)	≥80,0	Porcentaje promedio de llamadas de bases con una puntuación de calidad de Q30 o superior para la Lectura 1.	invalidado, no se notifican resultados para ninguna muestra	
	PCT_Q30_R2 (%)	≥80,0	Porcentaje promedio de llamadas de bases con una puntuación de calidad de Q30 o superior para la Lectura 2.	del experimento.	

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Tipo de resultado	Criterio de medición	Especificación	Descripción	Repercusión de no cumplir la especificación*
Genotecas de ADN	CONTAMINATION_ SCORE	≤3106 O >3106 con valor de p ≤0,049	Un criterio de medición que evalúa la probabilidad de contaminación usando la VAF de las variantes comunes. La puntuación de contaminación se basa en la distribución de la VAF de SNP. El valor de p (p-value) de la contaminación usado para evaluar genomas muy reorganizados. Solo procede cuando la puntuación de la contaminación está por encima del límite de especificación superior.	No se notifican resultados de ADN.
	MEDIAN_INSERT_ SIZE (pb)	≥70	La mediana de la longitud del fragmento en la muestra.	No se notifican resultados de
	MEDIAN_EXON_ COVERAGE (recuento)	≥150	Mediana de la cobertura de fragmentos de exones en todas las bases de exones.	TMB o variantes pequeñas de ADN.
	PCT_EXON_50X (%)	≥90,0	Porcentaje de bases de exones con cobertura de fragmentos 50x.	_
	USABLE_MSI_ SITES (recuento)	≥40	El número de ubicaciones de MSI utilizables para llamadas de MSI (número de centros de microsatélites con suficientes lecturas de extensión para identificar la inestabilidad de microsatélites).	No se notifican resultados de MSI.
	COVERAGE_MAD (recuento)	≤0,210	La mediana de las desviaciones absolutas del recuento normalizado de cada región de interés de variante en el número de copias (CNV).	
	MEDIAN_BIN_ COUNT_CNV_ TARGET (recuento)	≥1,0	La mediana del recuento bruto de grupos por CNV objetivo.	génica.
Genotecas de ARN	MEDIAN_INSERT_ SIZE (pb)	≥80,0	La mediana de la longitud del fragmento en la muestra.	No se notifican resultados de
	MEDIAN_CV_ GENE_500X (coeficiente)	≤0,93	MEDIAN_CV_GENE_500X es una medida de la uniformidad de cobertura. Para cada gen con una cobertura de al menos 500X, se calcula el coeficiente de variación en la cobertura en todo el cuerpo del gen. Este criterio de medición es la mediana de estos valores. Un valor elevado indica un alto nivel de variación, además de un problema en la preparación de la genoteca, como una entrada de muestra baja o problemas de extracción de la sonda. Este criterio de medición se calcula usando todas las lecturas (incluidas aquellas marcadas como duplicadas).	fusiones ni variantes alternativas de corte y empalme.
	TOTAL_ON_ TARGET_READS (recuento)	≥9 000 000	El número total de lecturas que se asignan a las regiones objetivo. Este criterio de medición se calcula usando todas las lecturas (incluidas aquellas marcadas como duplicadas).	

^{*} Si los resultados son satisfactorios, se muestra PASS (SUPERADO).

Tabla 41 Criterios de medición de control de los resultados del informe de TSO Comprehensive (UE)

Tipo de resultado	Criterio de medición	Especificación	Repercusión de no cumplir la especificación*
Control positivo	DNA External Control (Control externo de ADN)	23 de 24 variantes especificadas detectadas	Invalide manualmente las muestras de los pacientes en función de los resultados de las muestras de control. El software del módulo de análisis no invalida de forma automática las muestras de los pacientes según los resultados de las
	RNA External Control (Control externo de ARN)	12 de 13 variantes especificadas detectadas	muestras de control.
Ningún control sin cadena	Mediana de cobertura de exones del ADN para TSO Comprehensive (UE)	≤8	Invalide manualmente las muestras de los pacientes en función de los resultados de las muestras de control. El software del módulo de análisis no invalida de forma automática las
molde	Gen de ARN por encima de la mediana del umbral	≤1	muestras de los pacientes según los resultados de las muestras de control.

^{*} Si los resultados son satisfactorios, se muestra PASS (SUPERADO).

- El informe de TSO Comprehensive (UE), que está disponible en los formatos en PDF y JSON, resume los resultados del control de calidad. Los informes están en la carpeta de análisis. Consulte la ubicación de la carpeta de análisis para el Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661) (contiene un PDF e informes en JSON) y la carpeta del experimento.
- Repita los experimentos de secuenciación que no sean válidos.
- Repita las pruebas de las genotecas con los siguientes resultados:
 - Genotecas de ADN contaminadas
 - Genotecas de ARN inválidas
 - Las pruebas pueden repetirse para obtener más resultados de variantes o biomarcadores para que que de ADN que hayan sido invalidadas para un tipo de variante, pero no para todos.
- Los controles positivos se evalúan para la llamada de variantes. Si los controles positivos no cumplen las
 especificaciones de la llamada de variantes, invalide manualmente el experimento de secuenciación. El
 software del módulo de análisis no invalida de forma automática las muestras de los pacientes según los
 resultados de las muestras de control.
- Los NTC se evalúan con la mediana de la cobertura de exones para el ADN y los genes por encima de la
 mediana del umbral para ARN. Si los controles negativos no cumplen las especificaciones, invalide
 manualmente el evento de la preparación de genotecas y todos los experimentos de secuenciación
 asociados. El software del módulo de análisis no invalida de forma automática las muestras de los pacientes
 según los resultados de las muestras de control.
- Tome todas las medidas adicionales para el control de calidad en virtud de la regulación local, estatal o federal, o en virtud de los requisitos de acreditación.

Para obtener más información sobre la repetición de los experimentos de secuenciación o ensayos de genotecas, consulte *Solución de problemas*, en la página 82.

Solución de problemas

Use la siguiente tabla para solucionar los problemas que surjan durante el flujo de trabajo. Si un experimento de secuenciación o la preparación de genotecas para una muestra falla dos veces, puede ser necesaria una resolución de problemas adicional. Póngase en contacto con el servicio de asistencia técnica de Illumina.

Observación	Causa posible	Acción recomendada		
El experimento de secuenciación no supera las especificaciones del control de calidad del experimento	Error en el uso o en el equipo de laboratorio en el flujo de trabajo del ensayo			
	Problemas con el instrumento	Póngase en contacto con el servicio de asistencia técnica de Illumina.		
Error con generación de informe o error de instrumento general (error en la red, errores en la carga/descarga de reactivos, etc.).	Problemas con el software o el instrumento	Consulte Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661) para obtener ayuda con la generación de informes. Póngase en contacto con el servicio de asistencia técnica de Illumina para obtener asistencia adicional.		
La genoteca de ADN no supera las especificaciones del control de calidad	No se han cumplido los requisitos de entrada de muestras	Asegúrese de seleccionar una entrada de muestras adecuada y repita la preparación de genotecas desde el paso Fragmentación del ADNg. Consulte <i>Requisitos de la muestra</i> , en la página 24 y <i>Extracción, cuantificación y almacenamiento de ácido nucleico</i> , en la página 24.		
La genoteca de ADN no supera las especificaciones del control de calidad (continuación)	Error en el uso o en el equipo en el flujo de trabajo del ensayo	Repita la preparación de genoteca a partir de uno de los siguientes pasos, según dónde se sospecha que se produjo el error en el equipo o uso. Si se desconoce o se producen otros errores, póngase en contacto con el servicio de asistencia técnica de Illumina para iniciar la solución de problemas en su experimento. • Vuelva a secuenciar las genotecas de la placa de PCR de genotecas normalizadas (NL). Consulte <i>Preparación para la secuenciación</i> , en la página 73. • Vuelva a enriquecer las genotecas de la placa de PCR de muestras de genotecas amplificadas (ALS). Consulte <i>Configuración de la primera hibridación</i> , en la página 56. • Comience la preparación de genotecas a partir del inicio del flujo de trabajo. Consulte <i>Fragmentación del ADNg</i> , en la página 46.		

Observación	Causa posible	Acción recomendada		
	No se cumplen los criterios CONTAMINATION_SCORE, CONTAMINATION_P_VALUE	Consulte los avisos y las precauciones para obtener información acerca de cómo evitar la contaminación cruzada. Revise el diseño de la placa y la indexación de genotecas para asegurarse de que las genotecas del mismo índice no se secuencien juntas. Para las genotecas afectadas, inicie la preparación de genotecas desde el comienzo del flujo de trabajo. Consulte <i>Fragmentación de ADNg</i> , en la página 46. La contaminación puede haberse producido durante la extracción de muestras. Puede ser necesario repetir la extracción para asegurarse de que la muestra no esté contaminada.		
	Fallo de la MSI inutilizable	Revise los ajustes del fabricante del ultrasonicador para el uso y el funcionamiento (incluidos el nivel del agua y el tipo de tubo). Asegúrese de seleccionar una entrada de muestras adecuada en el ensayo. Consulte Requisitos de la muestra, en la página 24 y Extracción, cuantificación y almacenamiento de ácido nucleico, en la página 24. Puede ser necesaria una nueva extracción de muestras o repetir el paso de Fragmentación del ADNg si la muestra está fragmentada en exceso o si está dañada.		
	La muestra puede estar fragmentada en exceso o presentar ácido nucleico dañado, lo que afecta a la capacidad de generar suficientes genotecas únicas	Revise los ajustes del fabricante del ultrasonicador para el uso y el funcionamiento (incluidos el nivel del agua y el tipo de tubo). Asegúrese de seleccionar una entrada de muestras adecuada en el ensayo. Consulte Requisitos de la muestra, en la página 24 y Extracción, cuantificación y almacenamiento de ácido nucleico, en la página 24. Puede ser necesaria una nueva extracción de muestras o repetir el paso de Fragmentación del ADNg si la muestra está fragmentada en exceso o si está dañada.		
La genoteca de ARN no supera las especificaciones del control de calidad	No se han cumplido los requisitos de entrada de muestras	Asegúrese de seleccionar una entrada de muestras adecuada y repita la preparación de genotecas desde el paso Desnaturalización e hibridación de ARN. Consulte Requisitos de la muestra, en la página 24 y Extracción, cuantificación y almacenamiento de ácido nucleico, en la página 24.		
	Error en el uso o en el equipo en el flujo de trabajo del ensayo	Repita la preparación de genoteca a partir de uno de los siguientes pasos, según dónde se sospecha que se produjo el error en el equipo o uso. Si se desconoce o se producen otros errores, póngase en contacto con el servicio de asistencia técnica de Illumina para iniciar la solución de problemas en su experimento. Vuelva a secuenciar las genotecas de la placa de PCR de genotecas normalizadas (NL). Consulte <i>Preparación para la secuenciación</i> , en la página 73. Vuelva a enriquecer las genotecas de la placa de PCR de muestras de genotecas amplificadas (ALS). Consulte <i>Configuración de la primera hibridación</i> , en la página 56. Comience la preparación de genotecas a partir del inicio del flujo de trabajo. Consulte <i>Desnaturalización e hibridación de ARN</i> , en la página 42.		

Observación	Causa posible	Acción recomendada
	La muestra puede estar fragmentada en exceso o presentar ácido nucleico dañado, lo que afecta a la capacidad de generar suficientes genotecas únicas	Asegúrese de seleccionar una entrada de muestras adecuada. Consulte Requisitos de la muestra, en la página 24 y Extracción, cuantificación y almacenamiento de ácido nucleico, en la página 24. Puede ser necesaria una nueva extracción de muestras si la muestra está fragmentada en exceso o si está dañada.
Fallo en el control positivo (ADN/ARN)	No se han cumplido los requisitos de entrada de muestras para el control positivo. Error en el uso o en el equipo en el flujo de trabajo del ensayo	Asegúrese de seleccionar una entrada adecuada en el ensayo. Revise el diseño de la placa y asegúrese de usar los reactivos correctos (sondas, índices) en los pocillos correctos. Garantice que haya una muestra de control positivo almacenada según lo indicado en la etiqueta. Para todas las muestras que compartan el control positivo, repita l preparación de genotecas desde uno de los siguientes pasos según dónde se haya producido el supuesto error de uso o de equipo. Si se desconoce o se producen otros errores, póngase en contacto con el servicio de asistencia técnica de Illumina para iniciar la solución de problemas en su experimento. Vuelva a secuenciar las genotecas de la placa de PCR de genotecas normalizadas (NL). Consulte <i>Preparación para la secuenciación</i> , en la página 73. Vuelva a enriquecer las genotecas de la placa de PCR de muestras de genotecas amplificadas (ALS). Consulte <i>Configuración de la primera hibridación</i> , en la página 56. Comience la preparación de genotecas a partir del inicio del flujo de trabajo. Consulte <i>Desnaturalización e hibridación de ARN</i> , en la página 420 <i>Fragmentación del ADNg</i> , en la página
Fallo en el NTC (ADN/ARN)	Se produjo contaminación cruzada o contaminación en las zonas de trabajo	46. Consulte la sección Avisos y precauciones para obtener información sobre la descontaminación de las zonas de trabajo. Consulte los avisos y las precauciones para obtener información acerca de cómo evitar la contaminación cruzada. Revise el diseño de la placa y la indexación de genotecas para asegurarse de que las genotecas del mismo índice no se secuencien juntas.
	incorrecta	Repita la preparación de genotecas desde el comienzo del flujo de trabajo para todas las genotecas que compartan el control sin cadena molde.
El software indica que los controles positivos o negativos no se incluyeron en el experimento de secuenciación	Asignación incorrecta del Tipo de tumor en la planificación del experimento de Local Run Manager	Vuelva a poner en cola el análisis con los controles correctamente identificados, tal y como se indica en la Guía de flujo de trabajo del módulo de análisis TruSight Oncology Comprehensive (UE) de Local Run Manager (n.º de documento 200008661).

Características de rendimiento

TSO Comprehensive (UE) es un perfil de NGS de regiones de interés con 517 genes. Las variantes pequeñas de ADN —variantes de nucleótido único (SNV), variantes de nucleótido múltiple (MNV), inserciones y deleciones—se pueden notificar en el total de 517 genes. Las amplificaciones génicas se pueden notificar en los genes MET y ERBB2. Las fusiones se pueden notificar si se producen en los 23 genes indicados en la *Perfil de genes del ensayo de TSO Comprehensive (UE)*, en la página 2. Las variantes alternativas de corte y empalme se pueden notificar si se producen en los genes MET y EGFR. Para poder notificarlas, las variantes se deben detectar y haber probado en la KB del ensayo de TSO Comprehensive (UE) y ser aptas en función del tipo de tejido analizado. Para la notificación, las fusiones NTRK requieren que la pareja de fusión sea 5' y que el dominio de cinasa de NTRK o RET esté intacto.

Para las variantes pequeñas de ADN, se realizó una estrategia representativa para la validación de los genes de regiones de interés en el perfil con los datos que representan las SNV, MNV, inserciones y deleciones. Para las amplificaciones génicas, fusiones y variantes alternativas de corte y empalme, se realizaron pruebas al nivel del gen. Se evaluaron la TMB y MSI en los casos en los que se indicó. Para las especificaciones de CDx de NTRK, las fusiones en muestras FFPE se analizaron en estudios centrados en el rendimiento característico de la especificación (como límite de detección, precisión dentro del laboratorio, reproducibilidad, exactitud y rendimiento clínico).

La Tabla 42 proporciona las definiciones de los criterios de medición calculados en diversos estudios.

Tabla 42 Definiciones de los criterios de medición

Término	Definición
Concordancia porcentual positiva (PPA)	El porcentaje de positivos identificados de forma correcta a partir de los positivos totales en relación con un método ortogonal.
Concordancia porcentual negativa (NPA)	El porcentaje de negativos identificados de forma correcta a partir de los negativos totales en relación con un método ortogonal.
Concordancia porcentual global (OPA)	El porcentaje de positivos y negativos identificados de forma correcta a partir de la observación total en relación con un método ortogonal.
Porcentaje de concordancia positiva (PPC)	El porcentaje de llamadas positivas identificadas de forma correcta a partir de los positivos totales en relación con una condición de control en una comparación por pares directa.
Porcentaje de concordancia negativa (NPC)	El porcentaje de llamadas negativas identificadas de forma correcta a partir de los negativos totales en relación con una condición de control en una comparación por pares directa.
Porcentaje de llamadas positivas (PPC)	El porcentaje de observaciones que son positivas para una región de interés entre las observaciones que se espera que sean positivas para la región objetivo.
Porcentaje de llamadas negativas (NPC)	El porcentaje de observaciones que son negativas para una región de interés entre las observaciones que se espera que sean negativas para la región objetivo.

Contaminación cruzada

El estudio sobre la contaminación cruzada se llevó a cabo con el objetivo de evaluar si se producían positivos falsos en el ensayo de TSO Comprehensive (UE), bien porque se hubiera producido contaminación de un pocillo a otro durante la preparación de genotecas de muestras o porque se hubiera producido contaminación entre experimentos de secuenciación consecutivos. Se usaron dos muestras de ADN y dos de ARN con variantes únicas y no superpuestas para evaluar la contaminación cruzada. Se prepararon 32 genotecas de ADN y 32 genotecas de ARN tres veces por dos técnicos en un diseño de tabla de verificación con muestras alternativas para evaluar la contaminación de un pocillo a otro y con índices alternativos para evaluar la contaminación entre experimentos de secuenciación cuando estos se secuenciaron consecutivamente en el mismo Instrumento NextSeq 550Dx. Para evaluar la contaminación cruzada, se evaluaron las variantes pequeñas de ADN (que también afectan a la TMB) y las variantes de ARN (no se evaluaron la MSI y las amplificaciones génicas). El estudio de contaminación cruzada mostró cero eventos de contaminación observados al examinar las variantes detectadas en cada muestra, sin detectar positivos falsos.

Evaluación del kit de extracción de ácido nucleico

Se evaluaron tres kits de extracción de ADN y ARN disponibles en el mercado con TSO Comprehensive (UE). Los tres kits de extracción aislaron tanto ADN como ARN de las mismas secciones de tejido FFPE. Los kits difirieron en el agente utilizado para eliminar la parafina y los pasos de unión de ácido nucleico (Tabla 43). El Kit 1 fue el kit de extracción principal usado para determinar el rendimiento de TSO Comprehensive (UE).

Tabla 43 Características del kit

Kit	Agente utilizado para eliminar la parafina	Unión de ácido nucleico
1	Propiedad exclusiva	Columna
2	Xileno	Columna
3	Aceite mineral	Bolas magnéticas

Se extrajeron siete muestras (5 de tejido FFPE y 2 de líneas celulares FFPE) por duplicado por 2 técnicos repetidos en 3 días para cada uno de los 3 kits de extracción (7 muestras × 3 kits de extracción × 2 técnicos de extracción × 3 días de extracción × 2 réplicas de extracción).

La Tabla 44 resume los efectos de los kits de extracción en la validez de las genotecas y la llamada de variantes. Para la validez de las genotecas, se informó de la mayor diferencia de tasa entre los kits de extracción y se determinó la importancia mediante un análisis cuantitativo de los criterios de medición de las genotecas. Para la llamada de variantes, si las medias de los kits de extracción eran significativamente diferentes, se informaba de la diferencia.

Se observó que los kits de extracción afectan a los criterios de medición de validez de las genotecas para las variantes pequeñas de ADN/TMB y MSI. Los criterios de medición de validez de las genotecas para las amplificaciones génicas y el ARN no mostraron diferencias significativas entre los kits de extracción. Los kits de extracción no afectaron a la llamada de variantes para las variantes pequeñas de ADN y la puntuación de TMB. Para la puntuación de MSI y las amplificaciones génicas, no se detectaron positivos falsos, y un análisis

cuantitativo no halló diferencias significativas en las muestras negativas. Se observó que los kits de extracción tienen diferentes valores de lectura de apoyo, por lo que las fusiones y las variantes alternativas de corte y empalme cerca del LoD se pueden perder debido a la selección del kit de extracción.

El kit de extracción seleccionado se debe usar en la verificación por parte del laboratorio de las características de rendimiento de TSO Comprehensive (UE) y para obtener una validez adecuada de las genotecas.

Tabla 44 Efectos del kit de extracción en la validez de las genotecas y la llamada de variantes

Tipo de variante	Tasa de validez de las genotecas (Mayor diferencia)	Llamada de variantes (Media de mayor diferencia en la variable subyacente)	
Variantes pequeñas de ADN	Kit 2 significativamente inferior al Kit 3	No significativa	
TMB	(10 %)	No significativa	
MSI	Kit 1 significativamente inferior al Kit 3 (14 %)	Ningún positivo falso detectado Negativos falsos no evaluados	
Amplificación génica	No significativa (5 %)	Ningún positivo falso detectado Negativos falsos no evaluados	
Fusiones	No significativa (3 %)	Kit 1 significativamente inferior al Kit 3 (11 %)	
Variantes alternativas de corte y empalme		Kit 1 significativamente inferior al Kit 3 (11 %)	

Sustancias interferentes

Se evaluó el efecto de posibles sustancias endógenas y exógenas en el rendimiento del ensayo de TSO Comprehensive (UE) en 16 muestras FFPE únicas de los tipos de cerebro, tiroides, colon, mama, pulmón, próstata, piel y tejidos blandos. Las sustancias endógenas, la melanina y la hemoglobina se añadieron a las muestras durante el proceso de extracción de ácido nucleico. Las sustancias exógenas (etanol, xileno y proteinasa K) estuvieron presentes durante el proceso de extracción de ácido nucleico y también se añadieron al ácido nucleico purificado antes de la preparación de genotecas. También se evaluó la adición de proteinasa K adicional durante el proceso de extracción cuando se observaron interferencias con la proteinasa K añadida. Hubo un control endógeno no añadido y un control exógeno añadido con tampón o agua para cada una de las 16 muestras únicas. El efecto de la necrosis se evaluó en un conjunto diferente de ocho muestras FFPE de tejidos de pulmón, cerebro y colon. Para cada muestra de necrosis había un control macrodiseccionado sin necrosis. Para todos los interferentes, se analizaron cuatro réplicas por muestra y por sustancia con el ensayo de TSO Comprehensive (UE) y se compararon con su respectivo control para la detección de variantes pequeñas de ADN, amplificaciones génicas, fusiones de ARN y variantes alternativas de corte y empalme de ARN, así como para el estado de MSI y la puntuación de TMB.

Detección de variantes de ADN

La melanina (0,2 µg/ml), la hemoglobina (2 mg/ml), el etanol (5 %), la proteinasa K (0,04 mg/ml) y el xileno (0,0001 %) no interfieren con la puntuación de TMB, el estado de MSI, las variantes pequeñas de ADN y las amplificaciones génicas.

Detección de variantes de ARN

Los datos apoyan que no hay interferencia de la hemoglobina (2 mg/ml), la melanina (0,2 µg/ml), el etanol (5 %) y el xileno (0,0001 %) en las fusiones de ARN o las variantes alternativas de corte y empalme. Del mismo modo, no hubo interferencias en la detección de variantes de ARN cuando se añadieron 0,02 mg/ml de proteinasa K al ARN antes de la preparación de genotecas y cuando se añadieron hasta 2,6 mg/ml de proteinasa K a la muestra durante el proceso de purificación del ARN.

Se observaron algunos positivos falsos relativos a los controles sin interferencias entre las genotecas replicadas para las fusiones de ARN con hemoglobina, melanina, etanol y xileno y para las variantes alternativas de corte y empalme de ARN con melanina y xileno. Del mismo modo, se observaron algunos negativos falsos en algunas genotecas replicadas para las variantes alternativas de corte y empalme de ARN con hemoglobina, melanina, xileno y 0,02 mg/ml de proteinasa K. Sin embargo, en todos los casos, los positivos falsos y los negativos falsos se consideraron problemas de muestreo porque las observaciones de los eventos detectados mostraron lecturas de apoyo cerca del LoD. Por lo tanto, los positivos falsos y los negativos falsos entre las réplicas se consideraron no relacionados con la interferencia y se atribuyeron a la variación aleatoria del número de lecturas de apoyo para las fusiones o variantes alternativas de corte y empalme en o por debajo del LoD.

Necrosis

La presencia de tejido necrótico hasta el 70 % no interfiere con la puntuación de TMB, el estado de MSI, las variantes pequeñas de ADN o la detección de variantes alternativas de corte y empalme de ARN. La detección de fusiones de ARN y amplificaciones génicas se ve afectada en muestras con un contenido de necrosis ≥ 25 % en la superficie del tejido. Si la sección de muestra contiene más del 25 % de necrosis en la superficie del tejido total, entonces se debe macrodiseccionar el tejido necrótico.

Estabilidad

Estabilidad en tiempo real

La estabilidad en tiempo real se usó para establecer el periodo de validez del kit para ensayo de TSO Comprehensive (UE) cuando se almacena según las condiciones indicadas en la ficha técnica. El diseño del estudio se basó en la prueba de 3 lotes de reactivos y usó el clásico diseño de estudio de estabilidad descrito en CLSI EP25-A. Los kits se almacenaron en la configuración final de kit a lo largo de la duración del estudio, en condiciones de almacenamiento definidas en la ficha técnica del producto. Los componentes de kit congelados se almacenaron a entre -15 °C y -25 °C. Los componentes de kit refrigerados se almacenaron a entre 2 °C y 8 °C. Los componentes a temperatura ambiente se almacenaron a entre 15 °C y 30 °C.

Los kits se analizaron para determinar el aspecto y los criterios de liberación de kits funcionales en los puntos temporales especificados. Además, se analizaron las tendencias de la llamada de variantes y los criterios de medición de sample QC (CC de la muestra) para el material de control de CC. Se determinó el periodo de validez para cada reactivo. Se asignaron fechas de caducidad según la fecha de fabricación y el periodo de validez. La caducidad del kit se asigna según el reactivo que caduque antes.

Estabilidad en uso del kit

La estabilidad en uso del kit para ensayo de TSO Comprehensive (UE) se evaluó en condiciones de uso normales durante el periodo de validez del producto para que el kit pueda usarse varias veces. El kit de reactivos se sometió a múltiples congelaciones/descongelaciones y se analizó para avalar un máximo de 4 usos del kit. Además, se prepararon 8 genotecas de ARN y 8 genotecas de ADN un total de 3 veces para probar el número máximo de genotecas admitidas (24 genotecas de ADN y 24 genotecas de ARN por kit). Se cumplieron todos los criterios de liberación de kits funcionales para todos los ciclos de congelación/descongelación y todos los puntos temporales analizados. Se realizaron pruebas de las muestras FFPE con reactivos de ≥25 meses para evaluar el efecto de las pruebas en uso sobre la llamada de variantes. Un análisis cualitativo de las variantes de regiones de interés demuestra que los eventos en uso no afectaron a la llamada de variantes.

Estabilidad de las genotecas

La estabilidad de las genotecas preparadas con el ensayo de TSO Comprehensive (UE) se evaluó con 8 muestras de ADN FFPE y 8 muestras de ARN FFPE de 9 tipos de tejido diferentes sometidos a prueba por triplicado a lo largo del ensayo. Las genotecas de PCR de genotecas normalizadas (NL) se agruparon y se secuenciaron el día 0. El volumen restante de las genotecas de dicha placa se almacenó congelado (entre -25 °C y -15 °C) y, posteriormente, se reagrupó y se secuenció el día 30. Los resultados significativos en términos estadísticos para las variantes pequeñas de DNA entre el día 0 y el día 30 fueron técnicamente insignificantes. No hubo diferencias estadísticas entre los resultados del día 0 y el día 30 para el estado de MSI, la puntuación de TMB, las amplificaciones génicas, las fusiones de ARN y las variantes alternativas de corte y empalme de ARN. Los datos indican que las genotecas generadas a partir del ensayo de TSO Comprehensive (UE) son estables para una duración máxima de 30 días a una temperatura de entre -25 °C y -15 °C.

Estabilidad de tejido FFPE montado en un portaobjetos

La estabilidad de los tejidos FFPE montados en un portaobjetos para su uso con el ensayo de TSO Comprehensive (UE) se evaluó seccionando bloques FFPE (secciones de 5 µm) de 16 muestras únicas que representaban 9 tipos de tejido, montándolas en portaobjetos, después de un almacenamiento a una temperatura ambiente en 3 puntos temporales: 1 día (control), 4 semanas y 8 semanas. Los ácidos nucleicos (tanto ADN como ARN) se extrajeron en el punto temporal indicado y, a continuación, se almacenaron congelados hasta haber finalizado las extracciones en todos los puntos temporales. El ARN extraído se almacenó a una temperatura entre -65 °C y -85 °C y el ADN extraído se almacenó a una temperatura entre -25 °C y -15 °C. Para cada punto temporal, se analizaron tres réplicas por muestra con el ensayo de TSO Comprehensive (UE) y se compararon con el control para las variantes pequeñas de ADN, el estado de MSI, la puntuación de TMB, la amplificación génica, las fusiones de ARN y las variantes alternativas de corte y empalme de ARN. Los datos indican que los tejidos FFPE montados en un portaobjetos para su uso con el ensayo de TSO Comprehensive (UE) son estables durante un periodo máximo de 4 semanas.

Guardbanding de valoración de entrada de ácido nucleico

La entrada de ácido nucleico para el ensayo de TSO Comprehensive (UE) se evaluó analizando el ADN de 33 muestras FFPE que abarcaban 17 tipos de tejido, en niveles de entrada que variaban entre 10 ng y 500 ng, y analizando el ARN de 5 muestras FFPE de 5 tipos de tejido en niveles de entrada que variaban entre 10 ng y 85 ng. Se evaluaron los criterios de medición de Library QC (CC de la genoteca), y estos dependían de las muestras. Los resultados del ADN demostraron que algunos, pero no todos, los criterios de medición de DNA Sample QC (CC de la muestra de ADN) responden a un aumento de la entrada por encima de la entrada nominal de 40 ng:

- MEDIAN_INSERT_SIZE no respondió a entradas superiores a 30 ng.
- MEDIAN_EXON_COVERAGE mostró una correlación positiva con el aumento de entrada.
- PCT_EXON_50X aumentó con el aumento de entrada hasta 80 ng.
- USABLE_MSI_SITES aumentó con el aumento de entrada. Algunas muestras con menos de 40 USABLE_MSI_ SITES a 40 ng cumplían la especificación a mayores entradas, lo que permitiría calcular una puntuación de MSI.
- MEDIAN_BIN_COUNT_CNV_TARGET aumentó con el aumento de entrada.
- El aumento de la entrada aumenta COVERAGE_MAD hacia el límite de especificación superior.

Los criterios de medición de RNA sample QC (CC de la muestra de ARN) aumentó (MEDIAN_INSERT_SIZE y TOTAL_ON_TARGET_READS) o disminuyó (MEDIAN_CV_GENE_500X) de 10 ng a 40 ng, pero, en general, no cambió entre 40 ng y 85 ng de entrada.

Límite del blanco

El porcentaje de positivos falsos (del total de negativos esperados) se evaluó mediante análisis duplicados de FFPE, normal o benigno, que no debe contener variantes somáticas para variantes pequeñas de ADN, amplificaciones génicas, MSI, fusiones de ARN y variantes alternativas de corte y empalme de ARN. No se analizaron los positivos falsos para determinar la TMB, ya que no existe ningún umbral clínico. Se hicieron experimentos con 6 muestras FFPE de ARN por duplicado con 2 técnicos a lo largo de 3 días para cada uno de los 2 lotes de reactivos. Un subconjunto de muestras se reagrupó y resecuenció en un formato de solo 3 × ADN y un formato de solo 3 × ARN para evaluar los positivos falsos con varias configuraciones de multiplexado admitidas por este dispositivo. Además, se hicieron experimentos con 30 muestras de ARN más por duplicado, las cuales se procesaron con 1 lote de reactivos, divididos entre 2 técnicos. En total, había 168 observaciones posibles para el ADN y 228 observaciones para el ARN reducidas por genotecas no válidas por cada tipo de variante. El porcentaje de positivos falsos se calculó a nivel de los genes para las amplificaciones y a nivel de las posiciones (aproximadamente 1,9 millones de posiciones) para las variantes pequeñas de ADN. El porcentaje de positivos falsos para los tipos de variantes de ADN se muestra en la Tabla 45. El porcentaje de positivos falsos para las fusiones de ARN y variantes alternativas de corte y empalme fue del 0 %, como se muestra en la Tabla 46.

Tabla 45 Positivos falsos por tipo de variante de ADN

Tipo de variante	Positivos falsos
Amplificaciones génicas	0 % (0/9912)
Variantes pequeñas de ADN	0,0001 % (271/295,801,567)
MSI	0 % (0/156)
TMB	N/D*

^{*} Los positivos falsos no son aplicables porque la TMB se notifica como puntuación y no tiene un resultado cualitativo.

Tabla 46 Tasa de positivos falsos por tipo de variante de ARN

Tipo de variante	Positivos falsos
Fusión	0 % (0/226)
Variante alternativa de corte y empalme	0 % (0/226)

Límite de detección

Se realizaron dos estudios para evaluar los límites de detección para TSO Comprehensive (UE). El Estudio 1 evaluó las variantes pequeñas de ADN de RET, las fusiones de RET y las fusiones de NTRK1 - 3. El Estudio 2 evaluó otras variantes de creación de perfiles tumorales.

Estudio 1

Se determinaron los límites de detección (LoD) de las variantes pequeñas de ADN de NTRK1, NTRK3 y RET y de las fusiones de NTRK1 - 3 y RET. El LoD es el valor más bajo del analito (por ejemplo, la frecuencia alélica de variantes o las lecturas de apoyo) que puede detectarse de forma regular (límite de detección del 95 % o un error de tipo II del 5 %). En el estudio, se usaron tejidos FFPE con variantes pequeñas de ADN de RET (cáncer tiroideo medular), fusiones de RET (cáncer tiroideo papilar, tumor atípico de Spitz) y fusiones de NTRK1 - 3 (glioma de grado bajo, glioblastoma multiforme, sarcoma miofibroblástico, sarcoma, cáncer de mama secretor, cáncer de colon), así como una línea celular tratada en FFPE con variantes pequeñas de ADN de NTRK1 y NTRK3. Cada muestra se diluyó hasta al menos 5 niveles de prueba (que varían entre aproximadamente 0,01 y 0,10 de VAF para las variantes pequeñas de ADN y aproximadamente 2-25 lecturas de apoyo para las fusiones). Hubo 18 observaciones para cada nivel de prueba por lote por variante generada por 3 técnicos y 3 instrumentos de secuenciación que iniciaron la preparación de genotecas en 3 días no consecutivos con 2 réplicas de cada nivel de prueba de la muestra. Se analizaron dos lotes de reactivos.

En el caso de las variantes de ADN, los 2 lotes se analizaron de forma independiente usando la regresión probit o el enfoque de la tasa de coincidencias (nivel de prueba más bajo con una tasa de coincidencia [estimación puntual] del ≥95 %) para determinar el LoD de cada variante por lote. El mayor LoD de los dos lotes de reactivos se tomó como límite de detección de la variante (Tabla 47).

Para las fusiones de ARN, se usaron líneas celulares FFPE para estimar los valores de LoD para cada gen de fusión. A continuación, se verificaron los LoD con tejidos FFPE usando preparaciones de genotecas duplicadas a través de 3 técnicos, 3 instrumentos y 3 lotes de reactivos para generar 54 observaciones por variante cerca

del LoD establecido con las líneas celulares FFPE. Los límites de detección reivindicados para cada fusión (Tabla 48) son la media más baja de las lecturas de apoyo que alcanzaron una tasa de coincidencia (estimación puntual) del ≥95 %.

Tabla 47 Límite de detección para las variantes pequeñas de ADN de NTRK1, NTRK3 y RET

Marcador	Chr	Posición	Referencia	Alternativa	Límite de detección (frecuencia alélica de variantes)
NTRK1 G595R (SNV)*	Chr1	156846342	G	Α	0,038
NTRK3 F617L (SNV)*	Chr15	88476283	А	G	0,032
NTRK3 G623R (SNV)*	Chr15	88476265	С	Т	0,036
NTRK3 G696A (SNV)*	Chr15	88472468	С	G	0,027
RET C618R (SNV)	Chr10	43609096	T	С	0,053
RET M918T (SNV)	Chr10	43617416	T	С	0,045
RET C634Y (MNV)	Chr10	43609949	GC	AT	0,045
RET D898_E901del (deleción)*	Chr10	43615611	GAGATGTTTATGA	G	0,055

Chr = cromosoma

Tabla 48 Límite de detección para las fusiones de NTRK y RET

Gen	Fusión	Límite de detección (lecturas de apoyo)	
NTRK1	TPM3-NTRK1	20,2	
	BCAN-NTRK1	53,2	
NTRK2	STRN-NTRK2	13,6	
	ETV6-NTRK2	20,3	
NTRK3	KANK1-NTRK3	13,5	
	ETV6-NTRK3	16,2	
RET	NCOA4-RET	15,8	
	KIF5B-RET	16,6	

Estudio 2

Se evaluaron los límites de detección (LoD) de las variantes de creación de perfiles tumorales notificadas mediante TSO Comprehensive (UE). El LoD es el valor más bajo del analito (frecuencia alélica de variantes, magnitud del cambio o lecturas de apoyo) que puede detectarse de forma regular (tasa de coincidencias del

^{*} Estas variantes de ADN se analizaron mediante regresión probit; el resto de variantes de ADN se analizaron mediante el enfoque de la tasa de coincidencias.

95 % o un error de tipo II del 5 %). Las muestras de FFPE de 17 tipos de tejidos que contenían variantes se diluyeron a múltiples niveles de prueba. Se generaron seis observaciones por nivel por parte de dos técnicos, usando cada una un lote de reactivos y un instrumento diferentes.

Variantes de ADN

Los LoD de 10 clases de variantes pequeñas de ADN (25 variantes en total) y 2 amplificaciones génicas de ADN (ERBB2 y MET) se determinaron y resumieron en intervalos (Tabla 49). También se incluyen las variantes RET del LoD del Estudio 1. Dos de las 3 inserciones de más de 5 pb tenían LoD de 0,034 y 0,036 de VAF, y la tercera tenía un LoD de 0,215 de VAF. Esta última fue una inserción en una región de baja complejidad en la que la inserción añade repeticiones adicionales, afecta a la alineación y requiere más lecturas para una detección uniforme. Por lo tanto, algunos contextos genómicos de baja complejidad pueden afectar a la detección de las inserciones >5 pb.

Tabla 49 Límite de detección para las variantes pequeñas de ADN y amplificaciones génicas

Tipo (unidad de medida de LoD)	Clase de variante/contexto genómico	Número de variantes	Intervalo
Variantes pequeñas de ADN (frecuencia alélica	SNV	5	0,016-0,064
de variantes)	MNV	3	0,022-0,048
	Inserción (1-2 pb) cerca de las repeticiones de homopolímero	2	0,086-0,104
	Inserción (1-2 pb) cerca de las repeticiones de dinucleótido	2	0,038-0,051
	Inserción (3-5 pb)	2	0,030-0,056
	Inserción (>5 pb y hasta 25 pb)	3	0,034-0,215
	Deleción (1-2 pb) cerca de las repeticiones de homopolímero	2	0,094-0,100
	Deleción (1-2 pb) cerca de las repeticiones de dinucleótido	2	0,033-0,070
	Deleción (3-5 pb)	2	0,028-0,064
	Deleción (>5 pb y hasta 25 pb)	2	0,047-0,055
Amplificaciones génicas (magnitud del cambio)	Según el gen (ERBB2, MET)	2	2,034-2,195

Fusiones

Se determinaron los LoD para 18 fusiones, que representan 20 genes en el perfil de TSO Comprehensive (UE), que variaron entre 10 y 54,7 lecturas de apoyo (Tabla 50). Se sometieron a prueba 3 genes más (NTRK1-3) en el otro estudio. El gen RET se analizó en este estudio y en el otro estudio de LoD. Dieciséis fusiones con LoD determinados tenían datos uniformes con un LoD común de 16 lecturas de apoyo usando un límite superior de confianza (UCL) del 95 % bilateral. Dos fusiones tuvieron LoD de 24,7 y 44,2 lecturas de apoyo que no eran coherentes con el LoD común.

La fusión FGFR2-SRPK2, con un valor de LoD de 24,7 lecturas de apoyo, tenía regiones de superposición de repetición en el punto de ruptura, según lo anotado por el software del ensayo TSO Comprehensive (UE). Las regiones de repetición dentro de un punto de ruptura suelen tener niveles de prueba más bajos, ya que las lecturas se pueden asignar en otra parte del genoma o pueden quedar sin alinear. Además, las regiones de repetición hacen que el proceso de ensamblaje (usado para identificar las secuencias de fusión) sea más difícil y requiera indicios adicionales para construir la secuencia correcta. La SEPT14-EGFR es otro ejemplo de una fusión con una secuencia homóloga en el punto de ruptura.

La fusión BCL2-IGHJ5 con un valor de LoD de 44,2 lecturas de apoyo tenía un gen muy corto (IGHJ5) con el punto de ruptura cerca del comienzo de un exón que requería alineaciones cortas separadas. En consecuencia, se requirieron más lecturas para una detección regular.

Tabla 50 Límite de detección para las fusiones

Fusión	Punto de ruptura del gen A	Punto de ruptura del gen B	LoD	LoD común
NCOA4-RET	51582937	43612030	10,0	sí
TMPRSS2-ERG	39817543	42880007	13,2	sí
KIF5B-RET	32311775	43612032	14,5	sí
ACPP-ETV1	132036419	14028762	17,2	sí
FGFR3-TACC3	1801536	1736997	17,5	sí
EML4-ALK	29446394	42553391	20,2	sí
FGFR1-GSR	38274821	30569602	23,7	sí
EGFR-GALNT13	55087056	155295102	24	sí
ESR1-CCDC170	151857451	152023138	24,3	sí
FGFR2-SRPK2	123353223	104926165	24,7	no
HNRNPUL1-AXL	41743847	41782201	26,3	sí
CD74-ROS1;GOPC	149784243	117645578	28,2	sí
SPIDR-NRG1	32453345	48353103	28,2	sí
RAF1-VGLL4	12641189	11606492	28,5	sí
DHX8;ETV4-STAT3	41613847	40474300	30,5	sí
MKRN1-BRAF	140487383	140158806	31,2	sí
BCL2-IGHJ5	60793496	106330066	44,2	no
PAX3-FOXO1	41134997	223084859	54,7	sí

Variantes alternativas de corte y empalme

Las 2 variantes alternativas de corte y empalme de ARN, MET y EGFR, tuvieron LoD de 18,7 y 24,8 lecturas de apoyo, respectivamente.

Contenido tumoral

Los resultados del estudio sirven como fundamento para las recomendaciones sobre el contenido tumoral de las muestras clínicas. En general, cuanto mayor sea el contenido tumoral, mayor es la "señal" (VAF, múltiplo de cambio o lecturas de apoyo) para las variantes en el tumor. Las recomendaciones de contenido tumoral mínimo se basan en las siguientes observaciones. Los valores de LoD para las variantes pequeñas de ADN no son superiores a 0,104 de VAF (con la excepción de la inserción de TP53). Para detectar mutaciones iniciadoras en el tumor (0,50 de frecuencia alélica de variantes), se recomienda un 20 % de contenido tumoral, por lo que estas mutaciones tendrían una VAF de 0,10 y estarían en o por encima del LoD. Con un contenido tumoral del 20 %, los genes amplificados hasta un múltiplo de cambio de 5,5 (11 copias) se detectarían de forma regular basándose en un límite de detección de una magnitud del cambio de 1,8. Con un contenido tumoral del 20 %, las fusiones con 80 lecturas de apoyo se detectarían de forma regular basándose en un límite de detección de 16 lecturas de apoyo.

Reproducibilidad

Se realizaron dos estudios para evaluar la reproducibilidad del ensayo de TSO Comprehensive (UE). El Estudio 1 evaluó las variantes pequeñas de ADN de RET, además de las variantes de fusiones NTRK y RET. El Estudio 2 evaluó las variantes de creación de perfiles tumorales adicionales.

Estudio 1

Se realizó este estudio para evaluar la reproducibilidad del ensayo de TSO Comprehensive (UE) en 3 centros de pruebas (1 interno, 2 externos) con 2 técnicos por centro, 2 réplicas dentro del experimento y 3 días de prueba no consecutivos. Las pruebas se realizaron con un perfil de reproducibilidad que incluía muestras de ADN que contenían variantes pequeñas de ADN de RET conocidas específicas y muestras de ARN que contenían variantes de fusiones de NTRK1 - 3 y RET conocidas específicas procedentes de muestras de tejido fijadas en formol e incluidas en parafina (FFPE) y líneas celulares. El perfil contenía elementos del perfil de ADN y ARN con niveles bajos de variantes y niveles altos de variantes con el mismo número de elementos del perfil de nivel bajo y alto para cada clase de variante. Los elementos del perfil de nivel alto se dirigieron aproximadamente a entre 2 y 3 veces el LoD, y los elementos del perfil de nivel bajo se dirigieron aproximadamente al LoD. En cada centro, cada técnico examinó los elementos del perfil por duplicado 3 veces, generando 6 observaciones por región de interés por elemento del perfil. A partir de los 3 centros, se generaron 36 observaciones por elemento del perfil (3 centros/instrumentos × 2 técnicos × 2 réplicas dentro del experimento × 3 días de inicio).

El porcentaje de llamadas positivas (PPC) y el porcentaje de llamadas negativas (PNC) para las variantes pequeñas de ADN de regiones de interés y las variantes de fusiones de ARN de regiones de interés en el nivel alto se determinaron como criterios de valoración principales. Como criterios de valoración secundarios se calcularon los PPC y los PNC para las variantes pequeñas de ADN de regiones de interés y las variantes de fusiones de ARN de regiones de interés en el nivel bajo. Los intervalos de confianza (IC) del 95 % bilateral asociados a todos los criterios de valoración se calcularon por medio del método de puntuación de Wilson. Se realizaron análisis primarios para estimar el PPC y el PNC (con IC del 95 % asociados) en los elementos del perfil de nivel alto de regiones de interés combinando las observaciones del ensayo de TSO Comprehensive (UE)

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

para una región de interés determinada en un grupo de elementos del perfil que representaban la clase de variante aplicable (por ejemplo, variantes pequeñas de ADN y fusiones de ARN) en todos los centros/instrumentos, técnicos y experimentos. En cada variante de regiones de interés, se combinaron las observaciones de ensayos de TSO Comprehensive (UE) en otros elementos del perfil en el nivel alto de regiones de interés para el mismo tipo de variante, pero que no contenían la misma variante según la regla de la mayoría, para calcular el PNC. Se determinaron de manera similar el PPC y el PNC globales para los elementos del perfil de regiones de interés de nivel bajo.

N.º de documento 200007789 v06

Variantes pequeñas de ADN de RET

En el caso de los elementos del perfil de variantes pequeñas de ADN de alto nivel, el PPC global fue del 100,0 % (207/207; IC del 95 %: del 98,2 % al 100,0 %) (Tabla 51). El PNC global en el caso de los elementos del perfil de variantes pequeñas de ADN de alto nivel fue del 100,0 % (1035/1035; IC del 95 %: del 99,6 % al 100,0 %) (Tabla 52). En el caso de los elementos del perfil de variantes pequeñas de ADN selectivo de bajo nivel, el PPC global de los elementos del perfil de variantes pequeñas de ADN de regiones de interés de bajo nivel fue del 99,1 % (210/212; IC del 95 %: del 96,6 % al 99,7 %) y el PNC global fue del 100,0 % (1026/1026; IC del 95 %: del 99,6 % al 100,0 %).

Tabla 51 PPC del ensayo de TSO Comprehensive (UE) para la detección de variantes pequeñas de ADN de RET en los elementos del perfil de regiones de interés de alto y bajo nivel

Nivel de variantes	Tipo de variante	Variante de regiones de interés (Nucleótido)	Variante de regiones de interés (Aminoácido)	n	Media de la VAF	Porcentaje de llamadas positivas (%)	IC del 95 %*
Alto	SNV	chr10_43617416_T_C	RET M918T	34	0,156	100,0 % (34/34)	(89,8 %, 100,0 %)
Alto	SNV	chr10_43609949_G_C	RET C634S	36	0,140	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	SNV	chr10_43614996_G_A	RET V804M	33	0,116	100,0 % (33/33)	(89,6 %, 100,0 %)
Alto	MNV	chr10_43609949_GC_AT	RET C634Y	35	0,195	100,0 % (35/35)	(90,1 %, 100,0 %)
Alto	Deleción	chr10_43615611_ GAGATGTTTATGA_G	RET D898_E901del	33	0,199	100,0 % (33/33)	(89,6 %, 100,0 %)
Alto	Inserción	chr10_43609946_T_ TGTGCCGCAC	RET C634_T636dup	36	0,095	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	Todas las variantes de ADN pequeñas altas	Todas las variantes de ADN pequeñas altas	Todas las variantes de ADN pequeñas altas	207	N/A	100,0 % (207/207)	(98,2 %, 100,0 %)
Bajo	SNV	chr10_43617416_T_C	RET M918T	35	0,042	100,0 % (35/35)	(90,1 %, 100,0 %)
Bajo	SNV	chr10_43601830_G_A	RET V292M	35	0,033	94,3 % (33/35)	(81,4 %, 98,4 %)
Вајо	SNV	chr10_43613840_G_C	RET E768D	36	0,044	100,0 % (36/36)	(90,4 %, 100,0 %)

N.º de documento 200007789 v06

Nivel de variantes	Tipo de variante	Variante de regiones de interés (Nucleótido)	Variante de regiones de interés (Aminoácido)	n	Media de la VAF	Porcentaje de llamadas positivas (%)	IC del 95 %*
Bajo	MNV	chr10_43609949_GC_AT	RET C634Y	36	0,071	100,0 %	(90,4 %,
						(36/36)	100,0 %)
Bajo	Deleción	chr10_43615611_	RET D898_E901del	34	0,065	100,0 %	(89,8 %,
		GAGATGTTTATGA_G				(34/34)	100,0 %)
Bajo	Inserción	chr10_43609946_T_	RET C634_T636dup	36	0,037	100,0 %	(90,4 %,
		TGTGCCGCAC				(36/36)	100,0 %)
Bajo	Todas las variantes de ADN	Todas las variantes de ADN	Todas las variantes de ADN	212	N/A	99,1 %	(96,6 %,
	pequeñas bajas	pequeñas bajas	pequeñas bajas			(210/212)	99,7 %)

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Abreviaturas: N/D, no disponible; VAF, frecuencia alélica de variantes.

^{*} Intervalo de confianza bilateral del 95 % calculado a través del método de puntuación de Wilson.

PARA USO DIAGNÓSTICO IN VITRO. SOLO PARA EXPORTACIÓN

N.º de documento 200007789 v06

Tabla 52 PPC del ensayo de TSO Comprehensive (UE) para la detección de variantes pequeñas de ADN de RET en los elementos del perfil de regiones de interés de alto y bajo nivel

Nivel de variantes	Tipo de variante	Variante de regiones de interés (Nucleótido)	Variante de regiones de interés (Aminoácido)	n¹	Porcentaje de llamadas negativas (%)	IC del 95 %²
Alto	SNV	chr10_43617416_T_C	RET M918T	173	100,0 % (173/173)	(97,8 %, 100,0 %)
Alto	SNV	chr10_43609949_G_C	RET C634S	171	100,0 % (171/171)	(97,8 %, 100,0 %)
Alto	SNV	chr10_43614996_G_A	RET V804M	174	100,0 % (174/174)	(97,8 %, 100,0 %)
Alto	MNV	chr10_43609949_GC_AT	RET C634Y	172	100,0 % (172/172)	(97,8 %, 100,0 %)
Alto	Deleción	chr10_43615611_ GAGATGTTTATGAG	RET D898_E901del	174	100,0 % (174/174)	(97,8 %, 100,0 %)
Alto	Inserción	chr10_43609946_T_ TGTGCCGCAC	RET C634_T636dup	171	100,0 % (171/171)	(97,8 %, 100,0 %)
Alto	Todas las variantes de ADN pequeñas altas	Todas las variantes de ADN pequeñas altas	Todas las variantes de ADN pequeñas altas	1035	100,0 % (1035/1035)	(99,6 %, 100,0 %)
Bajo	SNV	chr10_43617416_T_C	RET M918T	177	100,0 % (177/177)	(97,9 %, 100,0 %)
Bajo	SNV	chr10_43601830_G_A	RET V292M	143	100,0 % (143/143)	(97,4 %, 100,0 %)
Bajo	SNV	chr10_43613840_G_C	RET E768D	176	100,0 % (176/176)	(97,9 %, 100,0 %)
Bajo	MNV	chr10_43609949_GC_AT	RET C634Y	176	100,0 % (176/176)	(97,9 %, 100,0 %)
Bajo	Deleción	chr10_43615611_ GAGATGTTTATGA_G	RET D898_E901del	178	100,0 % (178/178)	(97,9 %, 100,0 %)
Bajo	Inserción	chr10_43609946_T_ TGTGCCGCAC	RET C634_T636dup	176	100,0 % (176/176)	(97,9 %, 100,0 %)
Bajo	Todas las variantes de ADN pequeñas bajas	Todas las variantes de ADN pequeñas bajas	Todas las variantes de ADN pequeñas bajas	1026	100,0 % (1026/1026)	(99,6 %, 100,0 %)

¹ Todas las observaciones agrupadas a partir de combinaciones de elemento del perfil-variante para las que la llamada mayoritaria es negativa, es decir, las variantes de regiones de interés que albergan fusiones con menos del 50 % de llamadas positivas.

² Intervalo de confianza bilateral del 95 % calculado a través del método de puntuación de Wilson.

z.°

de documento 200007789 v06

La Tabla 53 muestra el análisis de los componentes de varianza de las frecuencias alélicas de variantes (VAF) en las aproximadamente 36 observaciones de cada elemento del perfil. Se calcularon y presentaron la desviación estándar (SD) y el porcentaje de coeficiente de variación (% de CV; total y para cada fuente) para cada variante pequeña de ADN de RET de regiones de interés.

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Tabla 53 Análisis de los componentes de varianza del ensayo de TSO Comprehensive (UE) de VAF en los elementos del perfil de variantes pequeñas de ADN de regiones de interés

		ao ao 7 (Di Cao Logic								
Nivel de variantes	Tipo de variante	Variante de regiones de interés (Nucleótido)	Variante de regiones de interés (Aminoácido)	n	Media de la VAF	SD de centro (% de CV)	Técnico de componentes totales (% de CV)	SD de día (% de CV)	SD de réplica (% de CV)	SD de componentes totales (% de CV)
Alto	SNV	chr10_43617416_T_ C	RET M918T	34	0,156	0,011 (7,2 %)	0,000 (0,0 %)	0,000 (0,0 %)	0,017 (10,8 %)	0,020 (13,0 %)
Alto	SNV	chr10_43609949_G_ C	RET C634S	36	0,140	0,006 (4,6 %)	0,000 (0,0 %)	0,005 (3,7 %)	0,014 (10,2 %)	0,017 (11,8 %)
Alto	SNV	chr10_43614996_G_ A	RET V804M	33	0,116	0,005 (4,1 %)	0,000 (0,0 %)	0,002 (1,7 %)	0,012 (10,7 %)	0,013 (11,6 %)
Alto	MNV	chr10_43609949_ GC_AT	RET C634Y	35	0,195	0,000 (0,0 %)	0,000 (0,0 %)	0,009 (4,4 %)	0,012 (6,0 %)	0,015 (7,5 %)
Alto	Deleción	chr10_43615611_ GAGATGTTTATGA_ G	RET D898_ E901del	33	0,199	0,000 (0,0 %)	0,000 (0,0 %)	0,011 (5,5 %)	0,017 (8,6 %)	0,020 (10,2 %)
Alto	Inserción	chr10_43609946_T_ TGTGCCGCAC	RET C634_ T636dup	36	0,095	0,003 (3,0 %)	0,000 (0,0 %)	0,000 (0,0 %)	0,009 (9,6 %)	0,010 (10,1 %)
Bajo	SNV	chr10_43617416_T_ C	RET M918T	35	0,042	0,000 (0,0 %)	0,000 (0,0 %)	0,000 (0,0 %)	0,009 (22,2 %)	0,009 (22,2 %)
Bajo	SNV	chr10_43601830_G_ A	RET V292M	35	0,033	0,000 (0,0 %)	0,003 (9,8 %)	0,002 (6,2 %)	0,007 (21,7 %)	0,008 (24,6 %)
Bajo	SNV	chr10_43613840_G_ C	RET E768D	36	0,044	0,003 (6,0 %)	0,000 (0,0 %)	0,000 (0,0 %)	0,008 (17,5 %)	0,008 (18,5 %)
Bajo	MNV	chr10_43609949_ GC_AT	RET C634Y	36	0,071	0,000 (0,0 %)	0,008 (10,7 %)	0,000 (0,0 %)	0,011 (14,9 %)	0,013 (18,4 %)

N.º de documento 200007789 v06

Nivel de

variantes

Bajo

Bajo

Tipo de

variante

Deleción

Inserción

-	3	
ï	7	
7	ä	
	_	
\$		
(ว	
(כ	
-	Ħ	•
9	<u>ں</u>	
-	0	
(D	
Ò	ñ	
•	_	
5	_	
(D	
	_	
5	_	
(Ū	
(0	
	_	
5	ᅺ	
(D	
		1
		1
-	_	
3	-	į
(J)
ä	╮	۰
ų	_	
	כ	
•	-	
	1	Ė
,	_	
()
()
0)
01100	Chan)
011001)
0110010		
0110010		
01.00.097		
011001097		
011001097		
011001097)
)
011001097 00111)
d697 69h		-)
61.00.00 Comp.		
0110010g) 00111p1		
Circles Compile	" Choology Comprer	
Circle Garden	"" Chaolagy Comprehe	
Charles Combined	" Chaolady Camprene!	
one of the contract of the con		
	"Changooy Comprehens	
Charles Compression	"" (Incology Comprehensiv	
ondered of the one of the original of the orig		
oncorogy compromonon		
Charles of the charles	" Changology Comprehensive (
one of the contract of the	"" Changoody Comprehensive (U	
one of the contract of the	" Oncology Comprehensive (Ut	
666. 6b. 66666.	"" ()ncology (;ombrehensive (UF)	
61.60163) 60.1.p. 61.61.61.6 (6E)	Instrucciones de Uso de Trusiant Oncolody Comprenensive (UE)	

Técnico

componentes

totales (% de

SD de

día (%

de CV)

0,004

(6,4%)

0,003

(9,1%)

SD de

de CV)

0,010

(16,2%)

0,006

(15,9%)

réplica (%

SD de

0,013

0,008

(22,9 %)

(20,2 %)

componentes

totales (% de CV)

de

CV)

0,006

(9,9 %)

0,000

(0,0 %)

Variante de

regiones de

(Aminoácido)

RET D898_

RET C634_

T636dup

E901del

interés

Media

de la

VAF

0,065

0,037

n

34

36

SD de

de CV)

0,002

(2,5 %)

0,005

(13,8 %)

centro (%

Variante de

(Nucleótido)

G

chr10_43615611_

GAGATGTTTATGA_

chr10_43609946_T_

TGTGCCGCAC

regiones de interés

Fusiones NTRK 1-3 y RET

En el caso de los elementos del perfil de fusión de ARN de nivel alto, el PPC global fue del 99,3 % (285/287; IC del 95 %: del 97,5 % al 99,8 %) (Tabla 54). El PPC fue del 100 % para cada elemento del perfil de nivel alto, excepto para el elemento del perfil de BCAN-NTRK1 (PPC = 94,4 % [34/36; IC del 95 %: del 81,9 % al 98,5 %]). El PNC global para los elementos del perfil de fusión de ARN de nivel alto fue del 100,0 % (1724/1724; IC del 95 %: del 99,8 % al 100,0 %) (Tabla 55). El PPC global para los elementos del perfil de fusión de ARN de regiones de interés de nivel bajo fue del 95,4 % (272/285; IC del 95 %: 92,3 %, 97,3 %) y el PNC global fue del 100,0 % (1851/1851; IC del 95 %: del 99,8 % al 100,0 %).

Tabla 54 PPC del ensayo de TSO Comprehensive (UE) para la detección de fusiones NTRK y RET en los elementos del perfil de regiones de interés de alto y bajo nivel

			• •		
Nivel de variantes	Fusión de regiones de interés	n	Media de las lecturas de apoyo	Porcentaje de llamadas positivas (%)	IC del 95 %
Alto	LMNA-NTRK1	36	37,9	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	BCAN-NTRK1	36	33,6	94,4 % (34/36)	(81,9 %, 98,5 %)
Alto	ETV6-NTRK2	36	24,6	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	TRIM24-NTRK2	36	36,6	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	ETV6-NTRK3	36	56,4	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	BTBD1-NTRK3	35	32,9	100,0 % (35/35)	(90,1 %, 100,0 %)
Alto	NCOA4-RET	36	36,7	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	CCDC6-RET	36	33,4	100,0 % (36/36)	(90,4 %, 100,0 %)
Alto	Todas las fusiones de nivel alto	287	36,5	99,3 % (285/287)	(97,5 %, 99,8 %)
Вајо	LMNA-NTRK1	36	13,8	94,4 % (34/36)	(81,9 %, 98,5 %)
Bajo	BCAN-NTRK1	36	16,9	80,6 % (29/36)	(65,0 %, 90,2 %)
Вајо	ETV6-NTRK2	35	15,2	94,3 % (33/35)	(81,4 %, 98,4 %)
Bajo	STRN-NTRK2	36	13,6	100,0 % (36/36)	(90,4 %, 100,0 %)
Bajo	ETV6-NTRK3	36	24,8	100,0 % (36/36)	(90,4 %, 100,0 %)

Nivel de variantes	Fusión de regiones de interés	n	Media de las lecturas de apoyo	Porcentaje de llamadas positivas (%)	IC del 95 %*
Bajo	BTBD1-NTRK3	36	18,1	100,0 % (36/36)	(90,4 %, 100,0 %)
Bajo	NCOA4-RET	36	15,8	97,2 % (35/36)	(85,8 %, 99,5 %)
Bajo	KIF5B-RET	34	16,6	97,1 % (33/34)	(85,1 %, 99,5 %)
Bajo	Todas las fusiones de nivel bajo	285	16,8	95,4 % (272/285)	(92,3 %, 97,3 %)

^{*} Intervalo de confianza (CI) bilateral del 95 % calculado a través del método de puntuación de Wilson.

Tabla 55 PNC del ensayo de TSO Comprehensive (UE) para la detección de fusiones NTRK y RET en los elementos del perfil de regiones de interés de alto y bajo nivel

Nivel de variantes	Fusiones de regiones de interés	n¹	Porcentaje de llamadas negativas (%)	IC del 95 %²
Alto	LMNA-NTRK1	180	100,0 % (180/180)	(97,9 %, 100,0 %)
Alto	BCAN-NTRK1	251	100,0 % (251/251)	(98,5 %, 100,0 %)
Alto	ETV6-NTRK2	251	100,0 % (251/251)	(98,5 %, 100,0 %)
Alto	TRIM24-NTRK2	216	100,0 % (216/216)	(98,2 %, 100,0 %)
Alto	ETV6-NTRK3	144	100,0 % (144/144)	(97,4 %, 100,0 %)
Alto	BTBD1-NTRK3	216	100,0 % (216/216)	(98,2 %, 100,0 %)
Alto	NCOA4-RET	215	100,0 % (215/215)	(98,2 %, 100,0 %)
Alto	CCDC6-RET	251	100,0 % (251/251)	(98,5 %, 100,0 %)
Alto	Todas las fusiones de nivel alto	1724	100,0 % (1724/1724)	(99,8 %, 100,0 %)
Bajo	LMNA-NTRK1	213	100,0 % (213/213)	(98,2 %, 100,0 %)
Bajo	BCAN-NTRK1	249	100,0 % (249/249)	(98,5 %, 100,0 %)
Bajo	ETV6-NTRK2	250	100,0 % (250/250)	(98,5 %, 100,0 %)
Bajo	STRN-NTRK2	249	100,0 % (249/249)	(98,5 %, 100,0 %)
Bajo	ETV6-NTRK3	177	100,0 % (177/177)	(97,9 %, 100,0 %)
Bajo	BTBD1-NTRK3	249	100,0 % (249/249)	(98,5 %, 100,0 %)
Bajo	NCOA4-RET	213	100,0 % (213/213)	(98,2 %, 100,0 %)
Bajo	KIF5B-RET	251	100,0 % (251/251)	(98,5 %, 100,0 %)
Bajo	Todas las fusiones de nivel bajo	1851	100,0 % (1851/1851)	(99,8 %, 100,0 %)

¹ Todas las observaciones agrupadas a partir de combinaciones de elemento del perfil-variante para las que la llamada mayoritaria es negativa, es decir, las variantes de regiones de interés que albergan fusiones con menos del 50 % de llamadas positivas.

La Tabla 56 muestra el análisis de los componentes de varianza de las lecturas de apoyo a través de las aproximadamente 36 observaciones dentro de cada fusión de regiones de interés. La SD y el % de CV (total y para cada fuente) se calcularon y presentaron para cada fusión de regiones de interés.

² Intervalo de confianza (CI) bilateral del 95 % calculado a través del método de puntuación de Wilson.

Tabla 56 Análisis de los componentes de varianza del ensayo de TSO Comprehensive (UE) de las lecturas de apoyo en los elementos del perfil de fusión de ARN de regiones de interés

Nivel de variantes	Fusión	n	Media de las lecturas de apoyo	SD de centro (% de CV)	SD de técnico (% de CV)	SD de día (% de CV)	SD de réplica (% de CV)	SD de componentes totales (% de CV)
Alto	LMNA- NTRK1	36	37,9	3,52 (9 %)	3,37 (9 %)	6,93 (18 %)	9,04 (24 %)	12,39 (33 %)
Alto	BCAN- NTRK1	36	33,6	13,75 (41 %)	7,87 23	5,40 (16 %)	8,95 (27 %)	18,98 (57 %)
Alto	ETV6- NTRK2	36	24,6	8,03 (33 %)	3,50 (14 %)	4,20 (17 %)	4,86 (20 %)	10,86 (44 %)
Alto	TRIM24- NTRK2	36	36,6	11,44 (31 %)	4,24 (12 %)	6,82 (19 %)	6,87 (19 %)	15,57 (43 %)
Alto	ETV6- NTRK3	36	56,4	11,49 (20 %)	10,20 (18 %)	9,25 (16 %)	8,69 (15 %)	19,93 (35 %)
Alto	BTBD1- NTRK3	35	32,9	1,49 (5 %)	2,65 (8 %)	2,16 (7 %)	10,47 (32 %)	11,11 (34 %)
Alto	NCOA4- RET	36	36,7	4,64 (13 %)	4,09 (11 %)	6,17 (17 %)	5,20 (14 %)	10,17 (28 %)
Alto	CCDC6- RET	36	33,4	7,25 (22 %)	2,56 (8 %)	6,53 (20 %)	5,51 (16 %)	11,49 (34 %)
Bajo	LMNA- NTRK1	36	13,8	1,79 (13 %)	0,00 (0 %)	2,74 (20 %)	4,37 (32 %)	5,47 (40 %)
Bajo	BCAN- NTRK1	36	16,9	2,92 (17 %)	2,98 (18 %)	4,61 (27 %)	5,82 (34 %)	8,52 (50 %)
Bajo	ETV6- NTRK2	35	15,2	0,00 (0 %)	3,41 (22 %)	3,83 (25 %)	4,39 (29 %)	6,75 (45 %)
Bajo	STRN- NTRK2	36	13,6	1,77 (13 %)	0,61 (5 %)	2,33 (17 %)	2,57 (19 %)	3,95 (29 %)
Bajo	ETV6- NTRK3	36	24,8	6,03 (24 %)	3,46 (14 %)	0,00 (0 %)	6,39 (26 %)	9,44 (38 %)
Bajo	BTBD1- NTRK3	36	18,1	0,93 (5 %)	0,00 (0 %)	0,00 (0 %)	6,64 (37 %)	6,71 (37 %)
Bajo	NCOA4- RET	36	15,8	2,08 (13 %)	1,03 (7 %)	0,00 (0 %)	5,11 (32 %)	5,61 (36 %)
Bajo	KIF5B-RET	34	16,6	2,07 (12 %)	0,00 (0 %)	1,58 (10 %)	5,83 (35 %)	6,39 (39 %)

[%] de CV: porcentaje de coeficiente de variación.

Estudio 2

Se realizó un segundo estudio para evaluar la reproducibilidad del ensayo de TSO Comprehensive (UE) en 3 centros de pruebas (2 externos y 1 interno), 2 técnicos/instrumentos por centro, 3 lotes de reactivos únicos, 4 días de pruebas (no consecutivos) y 2 experimentos de secuenciación por genoteca de muestras.

SD: desviación estándar.

Las pruebas se realizaron con muestras de ADN y ARN extraídas de 41 muestras de tejido FFPE y 1 línea celular FFPE (con 1 muestra de tejido FFPE y la línea celular FFPE usados para crear 2 elementos del perfil cada uno). Las muestras de tejido eran de los siguientes tipos: vejiga, hueso, cerebro, mama, colon, yeyuno, riñón, hígado, pulmón, ovario, próstata, piel, tejidos blandos, estómago, tiroides y útero. Se analizó un total de 44 elementos del perfil, incluyendo elementos del perfil de ADN con variantes pequeñas de ADN (SNV, MNV, inserciones y deleciones), amplificaciones génicas, diferentes puntuaciones de TMB, altas puntuaciones de MSI y elementos del perfil de ARN con fusiones génicas y variantes alternativas de corte y empalme. La mayoría de los elementos del perfil tenían variantes de regiones de interés conocidas en niveles de aproximadamente 2 a 3 veces el límite de detección característico de la variante (~2-3 × LoD).

El LoD es la concentración de analito en la que los resultados del ensayo observados son positivos (variante detectada en relación con el umbral del ensayo de TSO Comprehensive (UE)) ≥ 95 % de las veces. La media de los niveles de variantes observados se clasificó en aproximadamente $<2 \times LoD$ (niveles de variante observados $<1,5 \times LoD$), $\sim 2-3 \times LoD$ (niveles de variante observados de 1,5 × LoD a 3,4 × LoD), y aproximadamente $>3 \times LoD$ (niveles de variante observados $>3,4 \times LoD$).

Los porcentajes de llamadas positivas (PPC) para las variantes pequeñas de ADN, las amplificaciones génicas, la MSI elevada (MSI-H) y las variantes de ARN se calcularon combinando las observaciones entre los experimentos de secuenciación y los centros. Los porcentajes de llamadas negativas (PNC) se calcularon de forma similar para las variantes pequeñas de ADN, las amplificaciones génicas y las variantes de ARN. Para cada variante de regiones de interés conocida, se combinaron las observaciones del ensayo de TSO Comprehensive (UE) en los elementos del perfil del mismo tipo de variante, pero que contenían otras variantes, que no se desviaban de la misma muestra de origen, y que no cumplían la regla de la mayoría para esa variante (es decir, <50 % de las llamadas eran positivas) a través de los centros, técnicos/instrumentos, días, lotes de reactivos y experimentos de secuenciación para calcular el PNC. Los intervalos de confianza bilateral del 95 % se calcularon por medio del método de puntuación de Wilson.

Variantes pequeñas de ADN

La Tabla 57 muestra los PPC para las variantes pequeñas de ADN de regiones de interés. Los PPC variaron del 91,3 % para una SNV de BRAF al 100 % para la mayoría de las variantes pequeñas de ADN.

Tabla 57 PPC del ensayo de TSO Comprehensive (UE) para la detección de variantes pequeñas de ADN en miembros del perfil de regiones objetivo combinadas

	•	<u> </u>				
Nivel de variantes observado ¹	Tipo de variante	Variante de regiones objetivo (nucleótido)	Variante de regiones de interés (aminoácido)	Media de la VAF ²	Porcentaje de Ilamadas positivas (%)	IC del 95 %³
~2-3 × LoD	DELECIÓN	chr5_112175751_CT_C	APC L1488fsTer19	0,181	100,0 % (28/28)	(87,9 %, 100,0 %)
~2-3 × LoD	DELECIÓN	chr5_112175675_AAG_A	APC S1465WfsTer3	0,166	100,0 % (40/40)	(91,2 %, 100,0 %)
~2-3 × LoD	INSERCIÓN	chr5_112175951_G_GA	APC T1556NfsTer3	0,227	100,0 % (32/32)	(89,3 %, 100,0 %)
~2-3 × LoD	INSERCIÓN	chr5_112175675_A_AAG	APC S1465fs*9	0,100	100,0 % (48/48)	(92,6 %, 100,0 %)

Nivel de variantes observado ¹	Tipo de variante	Variante de regiones objetivo (nucleótido)	Variante de regiones de interés (aminoácido)	Media de la VAF²	Porcentaje de Ilamadas positivas (%)	IC del 95 %³
<2 × LoD	INSERCIÓN	chr1_27024001_C_CG	ARID1A Q372fs*28	0,084	100,0 % (4/4)	(51,0 %, 100,0 %)
~2-3 × LoD	SNV	chr7_140453136_A_T	BRAF V600E	0,045	91,3 % (42/46)	(79,7 %, 96,6 %)
~2-3 × LoD	DELECIÓN	chr7_55242465_ GGAATTAAGAGAAGCA_ G	EGFR E746_A750del	0,112	100,0 % (46/46)	(92,3 %, 100,0 %)
~2-3 × LoD	SNV	chr7_55259515_T_G	EGFR L858R	0,045	100,0 % (38/38)	(90,8 %, 100,0 %)
~2-3 × LoD	DELECIÓN	chr22_41574678_GC_G	EP300 H2324fs*29	0,245	100,0 % (44/44)	(92,0 %, 100,0 %)
~2-3 × LoD	INSERCIÓN	chr17_37880981_A_ AGCATACGTGATG	ERBB2 Y772_A775dup	0,075	100,0 % (36/36)	(90,4 %, 100,0 %)
~2-3 × LoD	SNV	chr2_209113112_C_T	IDH1 R132H	0,155	100,0 % (36/36)	(90,4 %, 100,0 %)
~2-3 × LoD	MNV	chr12_25398284_CC_AT	KRAS G12D	0,111	100,0 % (38/38)	(90,8 %, 100,0 %)
~2-3 × LoD	INSERCIÓN	chr9_139399350_C_CG	NOTCH1 R1598fs*12	0,146	100,0 % (48/48)	(92,6 %, 100,0 %)
~2-3 × LoD	DELECIÓN	chr10_89720798_ GTACT_G	PTEN T319fs*1	0,157	100,0 % (44/44)	(92,0 %, 100,0 %)
<2 × LoD	INSERCIÓN	chr17_7578470_C_ CGGGCGG	TP53 P152_P153dup	0,157	100,0 % (2/2)	(34,2 %, 100,0 %)
~2-3 × LoD	INSERCIÓN	chr17_7574029_C_ CGGAT	TP53 R333HfsTer5	0,154	100,0 % (48/48)	(92,6 %, 100,0 %)

¹ Nivel de variantes calculado a partir de la media de la frecuencia alélica de variantes observada.

Los PNC fueron del 100 % en todas las variantes pequeñas de ADN.

La Tabla 58 muestra el análisis de los componentes de varianza de los resultados de la VAF para cada fuente de variación y la variación total en todos los elementos del perfil con variantes pequeñas de ADN de regiones de interés.

Tabla 58 Análisis de los componentes de la varianza de la VAF para las variantes pequeñas de ADN de regiones de interés

Variante de regiones de interés	N	Media de la VAF	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
chr2_209113112_C_T	36	0,155	0,008 (4,9)	0,006 (4,1)	0,034 (22,1)	0,000 (0,0)	0,016 (10,2)	0,039 (25,2)

² Media de la frecuencia alélica de variantes calculada a partir de los resultados del ensayo observados.

³ Intervalo de confianza bilateral del 95 % calculado a través del método de puntuación de Wilson.

			00.1	OD 1	00 1 1			00.1
Variante de regiones de interés	N	Media de la VAF	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
chr4_153332910_C_ CAGG	44	0,130	0,000 (0,0)	0,000 (0,0)	0,013 (10,3)	0,014 (11,1)	0,008 (6,1)	0,021 (16,3)
chr5_112175675_A_AAG	48	0,100	0,000 (0,0)	0,000 (0,0)	0,010 (10,4)	0,003 (2,9)	0,003 (3,3)	0,011 (11,3)
chr5_112175675_AAG_A	40	0,166	0,000 (0,0)	0,000 (0,0)	0,024 (14,2)	0,000 (0,0)	0,011 (6,7)	0,026 (15,7)
chr5_112175751_CT_C	28	0,181	0,000 (0,0)	0,000 (0,0)	0,029 (15,8)	0,019 (10,8)	0,008 (4,7)	0,036 (19,7)
chr5_112175751_CTTTA_ C	46	0,155	0,000 (0,0)	0,009 (5,6)	0,023 (14,9)	0,015 (9,7)	0,008 (5,5)	0,030 (19,4)
chr5_112175951_G_GA	32	0,227	0,000 (0,0)	0,006 (2,5)	0,034 (15,1)	0,000 (0,0)	0,011 (4,9)	0,036 (16,1)
chr7_55242465_ GGAATTAAGAGAAGCA_ G	46	0,112	0,000 (0,0)	0,004(3,8)	0,015 (13,7)	0,005 (4,1)	0,008 (6,9)	0,018 (16,3)
chr7_55259515_T_G	38	0,045	0,003 (6,0)	0,000 (0,0)	0,012 (27,3)	0,000 (0,0)	0,003 (6,8)	0,013 (28,8)
chr7_140453136_A_T	46	0,045	0,000 (0,0)	0,000 (0,0)	0,016 (34,9)	0,000 (0,0)	0,006 (12,2)	0,017 (36,9)
chr7_140453136_AC_TT	46	0,130	0,000 (0,0)	0,004 (2,9)	0,017 (13,4)	0,003 (2,6)	0,006 (4,9)	0,019 (14,8)
chr9_139399350_C_CG	48	0,146	0,015 (10,2)	0,000 (0,0)	0,012 (8,2)	0,000 (0,0)	0,004 (2,8)	0,020 (13,4)
chr10_89720798_ GTACT_G	44	0,157	0,000 (0,0)	0,003 (2,0)	0,021 (13,6)	0,002 (1,6)	0,010 (6,4)	0,024 (15,3)
chr12_25398284_CC_AT	38	0,111	0,000 (0,0)	0,000 (0,0)	0,019 (16,8)	0,003 (2,5)	0,008 (7,3)	0,020 (18,5)
chr17_7574002_CG_C	44	0,158	0,007 (4,2)	0,000 (0,0)	0,021 (13,5)	0,013 (8,6)	0,013 (8,2)	0,029 (18,4)
chr17_7574029_C_ CGGAT	48	0,154	0,000 (0,0)	0,000 (0,0)	0,017 (11,0)	0,006 (3,8)	0,010 (6,6)	0,021 (13,4)
chr17_37880981_A_ AGCATACGTGATG	36	0,075	0,013 (16,9)	0,006 (8,1)	0,013 (16,7)	0,000	0,004 (4,7)	0,019 (25,5)
chr22_41574678_GC_G	44	0,245	0,006 (2,4)	0,002 (0,6)	0,019 (7,9)	0,000	0,005 (2,1)	0,021 (8,6)

Hubo dos variantes pequeñas de ADN de regiones de interés para las que el número de observaciones era demasiado pequeño para ajustar un modelo de los componentes de la varianza. Para estas dos variantes de regiones de interés, las DE globales fueron de 0,027 para la variante chr1_27024001_C_CG y de 0,001 para la variante chr17_7578470_C_CGGGCGG.

Amplificaciones génicas

La Tabla 59 muestra los PPC para las amplificaciones génicas de regiones de interés. Los PPC fueron del 100,0 % para MET y del 100,0 % para ERBB2.

Tabla 59 PPC del ensayo de TSO Comprehensive (UE) para la detección de las amplificaciones génicas en miembros del perfil de regiones de interés en combinación

Nivel de variantes observado ¹	Variante de regiones de interés	Media del múltiplo de cambio observado ²	Porcentaje de llamadas positivas (%)	IC del 95 %³
~2-3 × LoD	MET	5,14	100,0 % (48/48)	(92,6 %, 100,0 %)
<2 × LoD	ERBB2	2,33	100,0 % (47/47)	(92,4 %, 100,0 %)

¹ Nivel de variantes calculado a partir de la media del múltiplo de cambio observado.

Los PNC fueron del 100 % en todas las amplificaciones génicas.

La Tabla 60 muestra el análisis de los componentes de varianza de los resultados del múltiplo de cambio para cada fuente de variación y la variación total en todos los elementos del perfil con amplificaciones génicas de regiones de interés.

Tabla 60 Análisis de los componentes de varianza del múltiplo de cambio para las amplificaciones génicas de regiones de interés

Variante de regiones de interés	N	Media del múltiplo de cambio	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
ERBB2	47	2,33	0,02	0,01	0,02	0,01	0,01	0,03
			(0,6)	(0,4)	(0,9)	(0,4)	(0,5)	(1,3)
MET	48	5,14	0,05	0,12	0,14	0,00	0,03	0,19
			(1,0)	(2,4)	(2,6)	(0,0)	(0,6)	(3,7)

MSI

La Tabla 61 muestra los PPC para los elementos del perfil de MSI-H de regiones de interés. Los PPC fueron del 100 % para ambos miembros del perfil de MSI-H.

Tabla 61 PPC del ensayo de TSO Comprehensive (UE) para la detección del estado de MSI-H en miembros del perfil de regiones de interés en combinación

Elemento del perfil	Media de la puntuación de MSI ¹	N	Porcentaje de llamadas positivas (%)	IC del 95 %²
TPSBD4	60,5	36	100,0 % (36/36)	(90,4 %, 100,0 %)
TPSBD6	55,7	32	100,0 % (32/32)	(89,3 %, 100,0 %)
Todos los miembros		68	100,0 % (68/68)	(94,7 %, 100,0 %)

² Media del múltiplo de cambio calculada a partir de los resultados del ensayo observados.

³ Intervalo de confianza bilateral del 95 % calculado a través del método de puntuación de Wilson.

¹ Media de la puntuación de MSI observada calculada a partir de los resultados del ensayo observados.

La Tabla 62 muestra el análisis de los componentes de varianza de los resultados de la puntuación de MSI para cada fuente de variación y la variación total en todos los elementos del perfil de regiones de interés para el estado de MSI-H.

Tabla 62 Análisis de los componentes de varianza de la puntuación de MSI para los elementos del perfil de MSI-H de regiones de interés

Elemento del perfil	N	Media de la puntuación de MSI	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
TPSBD4	36	60,5	0,0 (0)	0,0 (0)	2,1 (3)	0,0 (0)	2,1 (3)	3,0 (5)
TPSBD6	32	55,7	0,0 (0)	1,3 (2)	1,0 (2)	0,8 (1)	2,9 (5)	3,4 (6)

TMB

Para evaluar la reproducibilidad de las puntuaciones de TMB, se realizó un análisis cuantitativo de la puntuación en los elementos del perfil de TMB de regiones de interés, que representaban un intervalo de puntuaciones de TMB esperadas. La Tabla 63 muestra el análisis de los componentes de varianza de los resultados de la puntuación de TMB para cada fuente de variación y la variación total en los elementos del perfil de TMB. Las SD totales de la puntuación de TMB fueron de 1,0 (% de CV = 13) para un elemento del perfil (media de la puntuación de TMB = 7,6) y de 1,1 (% de CV = 2) para otro elemento del perfil (media de la puntuación de TMB = 63,2).

Tabla 63 Análisis de los componentes de varianza de la puntuación de TMB para los elementos del perfil de TMB de regiones de interés

Elemento del perfil	N	Media de la puntuación de TMB	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
TPSBD3	28	7,6	0,2 (2)	0,0 (0)	0,8 (10)	0,0 (0)	0,5 (7)	1,0 (13)
TPSBD4	44	63,2	0,3 (1)	0,6 (1)	0,4 (1)	0,0 (0)	0,7 (1)	1,1 (2)

Hubo 1 elemento del perfil de TMB para el que el número de observaciones era demasiado pequeño (N = 2) para ajustar un modelo de los componentes de varianza. Para este elemento del perfil, la SD global fue de 1,7.

Variantes de ARN

La Tabla 64 muestra los PPC para las variantes de ARN de regiones de interés. Los PPC variaron del 91,7 % para KIF5B-RET al 100 % para la mayoría de las variantes de ARN.

² Intervalo de confianza bilateral del 95 % calculado a través del método de puntuación de Wilson.

Tabla 64 PPC del ensayo de TSO Comprehensive (UE) para la detección de variantes de ARN en miembros del perfil de regiones de interés en combinación

100,0	Nivel de variantes observado ¹	Tipo de variante	Variante de regiones de interés	Media de las lecturas de apoyo ²	Porcentaje de llamadas positivas (%)	IC del 95 %³
100,0 100,	~2-3 × LoD	Fusión	ACPP-ETV1	44,7	100,0 % (46/46)	(92,3 %, 100,0 %
100,0 100,	~2-3 × LoD	Fusión	BCL2-IGHJ5	124,9	100,0 % (46/46)	(92,3 % 100,0 %
100,0 100,	~2-3 × LoD	Fusión	CD74-ROS1;GOPC	56,6	100,0 % (48/48)	(92,6 % 100,0 %
100,0 100,	~2-3 × LoD	Fusión	DHX8;ETV4-STAT3	48,9	100,0 % (46/46)	(92,3 % 100,0 %
100,0 100,	~2-3 × LoD	Fusión	EGFR-GALNT13	49,8	100,0 % (46/46)	(92,3 % 100,0 %
100,0 2-3 × LoD	~2-3 × LoD	Fusión	EML4-ALK	49,3	100,0 % (48/48)	(92,6 % 100,0 %
Top Pusión Fusión FGFR2-SRPK2 53,4 100,0 % (48/48) (92,6 100,0 %	~2-3 × LoD	Fusión	ESR1-CCDC170	45,1	100,0 % (46/46)	(92,3 %) 100,0 %
100,0 100,	~2-3 × LoD	Fusión	FGFR1-GSR	61,1	100,0 % (46/46)	(92,3 % 100,0 %
100,0 100,	~2-3 × LoD	Fusión	FGFR2-SRPK2	53,4	100,0 % (48/48)	(92,6 % 100,0 %
100,0 1,	~2-3 × LoD	Fusión	FGFR3-TACC3	53,5	100,0 % (48/48)	(92,6 % 100,0 %
96,7 \\ <2 × LoD Fusión MKRN1-BRAF 33,4 100,0 % (48/48) (92,6 100,0 \\ <2 × LoD Fusión PAX3-FOXO1 70,1 100,0 % (48/48) (92,6 100,0 \\ <2 × LoD Fusión RAF1-VGLL4 15,9 100,0 % (46/46) (92,3 100,0 \\ <2 × LoD Fusión SPIDR-NRG1 51,5 100,0 % (48/48) (92,6 100,0 \\ <2-3 × LoD Fusión TMPRSS2-ERG 43,5 97,9 % (47/48) (89,1 100,0 \\ <2-3 × LoD Variante alternativa de corte y empalme EGFR vIII 64,0 100,0 % (46/46) (92,3 100,0 \\ <2-3 × LoD Variante alternativa de Comisión del exón 14 61.2 100,0 % (48/48) (92,6 100,0 \\ <2-3 × LoD Variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6 100,0 \\ <2-3 × LoD Variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6 100,0 \\ <2-3 × LoD Variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6 100,0 \\ <	~2-3 × LoD	Fusión	HNRNPUL1-AXL	58,0	100,0 % (48/48)	(92,6 % 100,0 %
100,0 100,	<2 × LoD	Fusión	KIF5B-RET	11,6	91,7 % (44/48)	(80,4 % 96,7 %)
100,0 100,	<2 × LoD	Fusión	MKRN1-BRAF	33,4	100,0 % (48/48)	(92,6 % 100,0 %
100,0 ~2-3 × LoD Fusión SPIDR-NRG1 51,5 100,0 % (48/48) (92,6 100,0 ~2-3 × LoD Fusión TMPRSS2-ERG 43,5 97,9 % (47/48) (89,1 99,6 ~2-3 × LoD Variante alternativa de corte y empalme EGFR vIII 64,0 100,0 % (46/46) (92,3 100,0 ~2-3 × LoD Variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6	<2 × LoD	Fusión	PAX3-FOXO1	70,1	100,0 % (48/48)	(92,6 % 100,0 %
100,0 ~2-3 × LoD Fusión TMPRSS2-ERG 43,5 97,9 % (47/48) (89,1 99,6 stands) ~2-3 × LoD Variante alternativa de corte y empalme EGFR vIII 64,0 100,0 % (46/46) (92,3 100,0 % variante alternativa de Corte y empalme 100,0 % variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6 variante alternativa de Corte y empalme 100,0 % variante alternativa de Co	<2 × LoD	Fusión	RAF1-VGLL4	15,9	100,0 % (46/46)	(92,3 % 100,0 %
99,6 \\ ~2-3 × LoD Variante alternativa de corte y empalme ~2-3 × LoD Variante alternativa de corte y empalme ~2-3 × LoD Variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6)	~2-3 × LoD	Fusión	SPIDR-NRG1	51,5	100,0 % (48/48)	(92,6 % 100,0 %
corte y empalme 100,0 ~2-3 × LoD Variante alternativa de Omisión del exón 14 61.2 100,0 % (48/48) (92,6	~2-3 × LoD	Fusión	TMPRSS2-ERG	43,5	97,9 % (47/48)	(89,1 %, 99,6 %)
	~2-3 × LoD		EGFR vIII	64,0	100,0 % (46/46)	(92,3 % 100,0 %
100 ₁ 0	~2-3 × LoD	Variante alternativa de corte y empalme	Omisión del exón 14 de MET	61.2	100,0 % (48/48)	(92,6 % 100,0 %

¹ Nivel de variantes calculado a partir de la media de las lecturas de apoyo observadas.

² Media de las lecturas de apoyo calculada a partir de los resultados del ensayo observados.

³ Intervalo de confianza bilateral del 95 % calculado a través del método de puntuación de Wilson.

El PNC fue del 100 % para cada variante de ARN de regiones de interés, excepto para la fusión de FGFR2-SRPK2 (PNC = 99,60 % [984/988; IC del 95 %: del 98,96 % al 99,84 %]).

La Tabla 65 muestra el análisis de los componentes de varianza de los resultados de lecturas de apoyo para cada fuente de variación y la variación total en todos los elementos del perfil con variantes de ARN de regiones de interés.

Tabla 65 Análisis de los componentes de varianza de las lecturas de apoyo para las variantes de ARN de regiones de interés

Variante de regiones de interés	N	Media de las lecturas de apoyo	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
ACPP-ETV1	46	44,7	10,38 (23)	0,00 (0)	13,01 (29)	5,90 (13)	2,28 (5)	17,80 (40)
BCL2-IGHJ5	46	124,9	38,22 (31)	13,24 (11)	29,08 (23)	9,51 (8)	8,30 (7)	51,39 (41)
CD74-ROS1;GOPC	48	56,6	0,00	3,98 (7)	17,18 (30)	0,00	3,00 (5)	17,89 (32)
DHX8;ETV4-STAT3	46	48,9	18,27 (37)	13,42 (27)	17,01 (35)	0,00	1,50 (3)	28,38 (58)
EGFR-GALNT13	46	49,8	0,00	6,90 (14)	14,86 (30)	2,08 (4)	2,82 (6)	16,75 (34)
EML4-ALK	48	49,3	0,00	12,18 (25)	19,10 (39)	8,83 (18)	1,94 (4)	24,39 (49)
ESR1-CCDC170	46	45,1	2,30 (5)	0,00 (0)	12,37 (27)	0,00	8,08 (18)	14,95 (33)
FGFR1-GSR	46	61,1	8,57 (14)	1,31 (2)	11,15 (18)	9,23 (15)	5,18 (8)	17,65 (29)
FGFR2-SRPK2	48	53,4	3,18 (6)	10,90 (20)	15,85 (30)	15,29 (29)	3,10 (6)	24,97 (47)
FGFR3-TACC3	48	53,5	17,43 (33)	0,00 (0)	12,38 (23)	5,81 (11)	3,46 (6)	22,42 (42)
HNRNPUL1-AXL	48	58,0	0,00	12,15 (21)	18,22 (31)	0,00	3,96 (7)	22,26 (38)
KIF5B-RET	48	11,6	0,89	0,00 (0)	3,97 (34)	1,44 (12)	1,09 9	4,45 (38)
MKRN1-BRAF	48	33,4	6,98 (21)	8,19 (25)	13,02 (39)	6,63 (20)	4,00 (12)	18,58 (56)
PAX3-FOXO1	48	70,1	12,45 (18)	10,79 (15)	17,91 (26)	3,02 (4)	2,42 (3)	24,65 (35)
RAF1-VGLL4	46	15,9	1,46 9	1,52 (10)	3,80 (24)	4,42 (28)	1,23 (8)	6,32 (40)
SPIDR-NRG1	48	51,5	4,78 9	0,00	10,69 (21)	5,94 (12)	3,29 (6)	13,54 (26)
TMPRSS2-ERG	48	43,5	5,63 (13)	8,81 (20)	9,98 (23)	0,00 (0)	6,21 (14)	15,73 (36)

Variante de regiones de interés	N	Media de las lecturas de apoyo	SD de centro (% de CV)	SD de técnico (centro) (% de CV)	SD de día (centro, técnico) (% de CV)	SD de lote (% de CV)	SD de experimento (% de CV)	SD de componentes totales (% de CV)
Variante alternativa de corte y empalme de EGFR VIII	46	64,0	12,70 (20)	0,42 (1)	17,69 (28)	0,00 (0)	2,34 (4)	21,90 (34)
Variante alternativa de corte y empalme con omisión del exón 14 de MET	48	61.2	11,42 (19)	3,43 (6)	19,84 (32)	7,55 (12)	2,10 (3)	24,43 (40)

Precisión dentro del laboratorio

Se realizaron dos estudios para evaluar la precisión dentro del laboratorio para TSO Comprehensive (UE). El Estudio 1 evaluó las fusiones de NTRK y RET y las variantes pequeñas de ADN de RET. El Estudio 2 evaluó la TMB y la MSI.

Estudio 1

Se evaluó la precisión dentro del laboratorio para las fusiones de NTRK1-3 (glioma de grado bajo, glioblastoma multiforme, sarcoma miofibroblástico, cáncer de mama secretor), las fusiones de RET (cáncer de tiroides y tejido cutáneo de un cáncer desconocido) y las variantes pequeñas de ADN de RET (cáncer tiroideo medular) con tejidos FFPE de los cánceres indicados. Cada muestra se analizó en dos niveles de variantes: ~1 × LoD (nivel bajo de variantes) y ~2-3 × LoD (nivel alto de variantes), excepto la muestra que albergaba CCDC6-RET, que solo se analizó al nivel bajo de variantes. Se hicieron experimentos con cada una de las muestras de cada nivel de prueba por duplicado en cada evento de preparación de genotecas entre tres (3) técnicos. Cada técnico comenzó la preparación de genotecas en tres (3) días de inicio no consecutivos y secuenció en tres (3) instrumentos NextSeq 550Dx designados. Se analizaron tres (3) lotes de reactivos generando 54 observaciones por nivel. Algunos niveles tenían menos de 54 observaciones debido a la presencia de genotecas no válidas.

Análisis cualitativo

La concordancia cualitativa de la llamada de variantes se evaluó por separado en los dos niveles de variantes para una variante determinada a partir de observaciones agrupadas en todas las variables (técnicos, lotes de reactivos, instrumentos, días y réplicas). El porcentaje de llamadas positivas (PPC) y el porcentaje de llamadas negativas (PNC), así como el intervalo de confianza del 95 % bilateral asociado (puntuación de Wilson), se resumen en la Tabla 66 (variantes pequeñas de ADN) y en la Tabla 67 (fusiones de ARN).

Al nivel alto de variantes (~2-3 × LoD), el ensayo de TSO Comprehensive (UE) demostró un 100 % del PPC y PNC en todas las variantes sometidas a prueba.

Al nivel bajo de variantes (~1 × LoD), el PPC en las variantes pequeñas de ADN varió entre el 83,3 % y el 98,1 % y el PPC en las fusiones de ARN varió entre el 90,7 % y el 100 %. Para las variantes con un PPC <95 %, la media de las VAF (RET C634Y y RET D898_E901del) o las lecturas de apoyo (NCOA4-RET y BCAN-NTRK1) estaba por debajo de los respectivos límites de detección. Al nivel bajo de variantes, se logró un PNC del 100 % para todas las variantes.

Tabla 66 Resultados cualitativos para las variantes de ADN de regiones de interés

			ŭ		
Nivel de variantes	Variante	Tipo de variante	Media de la VAF	PPC (IC del 95 %)	PNC (IC del 95 %
Bajo	RET C634Y	MNV	0,028	83,3 % (45/54)	100,0 % (215/215)
(~1 × LoD)			,	(71,3 %-91,0 %)	(98,2 %-100,0 %)
	RET D898_E901del	DELECIÓN	0,048	87,0 % (47/54)	100,0 % (215/215)
				(75,6 %-93,6 %)	(98,2 %-100,0 %)
	RET C618R	SNV	0,045	94,4 % (51/54)	100,0 % (215/215)
				(84,9 %-98,1 %)	(98,2 %-100,0 %)
	RET M918T	SNV	0,042	96,2 % (51/53)	100,0 % (216/216)
				(87,2 %-99,0 %)	(98,3-100,0 %)
	RET D631_L633delinsE*	DELECIÓN	0,056	98,1 % (53/54)	100,0 % (215/215)
				(90,2 %-99,7 %)	(98,2 %-100,0 %)
Alto	RET C634Y	MNV	0,095	100,0 % (54/54)	100,0 % (192/192)
(~3 × LoD)			-,	(93,4 %-100,0 %)	(98,0 %-100,0 %)
	RET D898_E901del	DELECIÓN	0,088	100,0 % (54/54)	100,0 % (192/192)
				(93,4 %-100,0 %)	(98,0 %-100,0 %)
	RET C618R	SNV	0,146	100,0 % (54/54)	100,0 % (192/192)
				(93,4 %-100,0 %)	(98,0 %-100,0 %)
	RET M918	SNV	0,078	100,0 % (52/52)	100,0 % (194/194
				(93,1 %-100,0 %)	(98,1 %-100,0 %)
	RET D631_L633delinsE*	DELECIÓN	0,161	100,0 % (32/32)	100,0 % (214/214)
				(89,3 %-100,0 %)	(98,2 %-100,0 %)

^{*} Los cambios de nucleótidos se enumeran para cada variante en la sección Límite de detección, excepto para RET D631_ L633delinsE, que es Cromosoma 10, Posición 43609940, Referencia ACGAGCT, Alternativa A.

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Tabla 67 Resultados cualitativos para las fusiones de ARN de regiones de interés

	<u>'</u>			
Nivel de variantes	Fusión	Media de las lecturas de apoyo	PPC (IC del 95 %)	PNC (IC del 95 %)
Bajo	TPM3-NTRK1	20,2	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (537/537) (99,3 %, 100,0 %)
	BCAN-NTRK1	22,1	94,4 % (51/54) (84,9 %-98,1 %)	100,0 % (591/591) (99,4 %, 100,0 %)
	ETV6-NTRK2	20,3	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (591/591) (99,4 %, 100,0 %)
	ETV6-NTRK3	16,2	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (537/537) (99,3 %, 100,0 %)
	ETV6-NTRK3 (línea celular FFPE)	23,1	98,1 % (53/54) (90,2 %, 99,7 %)	
	NCOA4-RET	13,3	90,7 % (49/54) (80,1 %, 96,0 %)	100,0 % (537/537) (99,3 %, 100,0 %)
	CCDC6-RET	18,7	98,1 % (53/54) (90,2 %, 99,7 %)	100,0 % (591/591) (99,4 %, 100,0 %)
Alto	TPM3-NTRK1	57,1	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (481/481) (99,2 %, 100,0 %)
	BCAN-NTRK1	53,2	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (535/535) (99,3 %, 100,0 %)
	ETV6-NTRK2	52,0	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (535/535) (99,3 %, 100,0 %)
	ETV6-NTRK3	41,7	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (481/481) (99,2 %, 100,0 %)
	ETV6-NTRK3 (línea celular FFPE)	28,3	100,0 % (54/54) (93,4 %, 100,0 %)	
	NCOA4-RET	24,8	100,0 % (54/54) (93,4 %, 100,0 %)	100,0 % (481/481) (99,2 %, 100,0 %)
	CCDC6-RET	N/A	No analizado	100,0 % (589/589) (99,4 %, 100,0 %)

N.º de documento 200007789 v06

115 de 135

Análisis cuantitativo

Se realizó un análisis de los componentes de varianza de máxima verosimilitud restringida (REML) para evaluar la variación total de la variable continua subyacente (VAF para las variantes pequeñas de ADN y lecturas de apoyo para las fusiones de ARN) y estimar los componentes de la precisión [desviación estándar (SD), coeficiente de variación (CV)] para cada fuente de variación [técnicos, instrumentos, días, lotes de reactivos, componentes residuales y componentes totales]. Los resultados se presentan en la Tabla 68 para las variantes pequeñas de ADN y en la Tabla 69 para las fusiones de ARN.

La variación de la FAV aumentó con la media, como se esperaba para una proporción binomial. La variación de las lecturas de apoyo aumentó con la media, como se esperaba con los datos de recuento. El componente residual fue el que más contribuyó a la varianza total tanto para las variantes pequeñas de ADN como para las fusiones de ARN en ambos niveles, apoyando la conclusión de que la detección de estas variantes mediante TSO Comprehensive (UE) es sólida para los técnicos, lotes, instrumentos y días.

Tabla 68 Resultados de SD y CV cuantitativos para las variantes pequeñas de ADN de regiones de interés

Nivel de VAF	Variante	Tipo de variante	N intentos válidos	Media de la VAF	Técnico SD (% de CV)	Instrumento SD (% de CV)	SD de lote (% de CV)	SD de día (% de CV)	SD SD (% de CV)	Total SD (% de CV)
Bajo	RET D898_E901del	DELECIÓN	54	0,048	0,000	0,000	0,000	0,004	0,014	0,015
(~1 × LoD)					(0,0)	(0,0)	(0,0)	(8,7)	(30,0)	(31,2)
	RET C618R	SNV	54	0,046	0,000	0,000	0,000	0,000	0,014	0,014
					(0,0)	(0,0)	(0,0)	(0,0)	(31,3)	(31,3)
	RET M918T	SNV	53	0,042	0,000	0,001	0,000	0,000	0,011	0,011
					(0,0)	(3,0)	(0,0)	(0,0)	(25,6)	(25,7)
	RET C634Y	MNV	54	0,028	0,000	0,000	0,001	0,000	0,009	0,009
					(0,0)	(0,0)	(3,3)	(0,0)	(30,7)	(30,9)
	RET D631_	DELECIÓN	54	0,056	0,000	0,002	0,006	0,000	0,010	0,012
	L633delinsE				(0,0)	(3,0)	(11,6)	(0,0)	(18,5)	(22,0)

N.º de documento 200007789 v06

Nivel de VAF	Variante	Tipo de variante	N intentos válidos	Media de la VAF	Técnico SD (% de CV)	Instrumento SD (% de CV)	SD de lote (% de CV)	SD de día (% de CV)	SD SD (% de CV)	Total SD (% de CV)
Alto	RET D898_E901del	DELECIÓN	54	0,088	0,000	0,000	0,001	0,006	0,017	0,018
(~3 × LoD)					(0,0)	(0,0)	(1,4)	(7,0)	(19,2)	(20,5)
	RET C618R	SNV	54	0,146	0,003	0,000	0,020	0,002	0,018	0,027
					(1,7)	(0,0)	(13,7)	(1,1)	(12,6)	(18,7)
	RET M918T	SNV	52	0,078	0,002	0,000	0,000	0,007	0,018	0,020
					(3,1)	(0,0)	(0,0)	(9,1)	(23,1)	(25,0)
	RET C634Y	MNV	54	0,095	0,000	0,002	0,002	0,000	0,014	0,015
					(0,0)	(2,5)	(2,1)	(0,0)	(15,0)	(15,3)
	RET D631_	DELECIÓN	52*	0,164	0,000	0,000	0,005	0,000	0,020	0,020
	L633delinsE				(0,0)	(0,0)	(3,0)	(0,0)	(12,1)	(12,4)

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Tabla 69 Resultados de SD y CV cuantitativos para las fusiones de ARN de regiones de interés

Nivel de lecturas de apoyo	Fusión	N intentos válidos	Media de las lecturas de apoyo	SD de técnico (% de CV)	SD de instrumento (% de CV)	SD de lote (% de CV)	SD de día (% de CV)	SD de componentes residuales (% de CV)	SD de componentes totales (% de CV)
Bajo	TPM3- NTRK1	54	20,2	2,3 (11,5)	0,9 (4,7)	3,3 (16,4)	0,8 (4,1)	5,7 (28,2)	7,1 (35,2)
	BCAN- NTRK1	54	22,1	3,4 (15,3)	1,4 (6,4)	1,8 (8,0)	0,0 (0,0)	6,0 (27,2)	7,3 (32,9)
	ETV6- NTRK2	54	20,3	0,0 (0,0)	3,2 (15,7)	4,4 (21,5)	0,0 (0,0)	8,3 (40,8)	9,9 (48,7)
	ETV6- NTRK3	54	16,2	2,3 (14,0)	2,4 (14,6)	2,2 (13,4)	0,0 (0,0)	4,7 (28,7)	6,1 (37,5)
	ETV6- NTRK3 (línea celular)	54	23,1	4,6 (19,7)	1,2 (5,1)	0,0 (0,0)	0,0 (0,0)	6,7 (29,1)	8,2 (35,5)
-	NCOA4-RET	54	13,3	1,7 (12,6)	0,0 (0,0)	0,0 (0,0)	1,7 (12,6)	5,1 (38,3)	5,6 (42,2)
	CCDC6-RET	54	18,7	0,0 (0,0)	1,1 (6,1)	5,4 (29,1)	0,0 (0,0)	6,2 (33,0)	8,3 (44,4)

N.º de documento 200007789 v06

Nivel de lecturas de apoyo	Fusión	N intentos válidos	Media de las lecturas de apoyo	SD de técnico (% de CV)	SD de instrumento (% de CV)	SD de lote (% de CV)	SD de día (% de CV)	SD de componentes residuales (% de CV)	SD de componentes totales (% de CV)
Alto	TPM3-	54	57,1	11,2	1,2	5,7	2,0	11,9	17,4
	NTRK1		•	(19,6)	(2,1)	(9,9)	(3,5)	(20,8)	(30,5)
	BCAN-	54	53,2	8,2	0,8	5,6 (10,5)	2,9	11,3	15,4
	NTRK1			(15,5)	(1,4)		(5,4)	(21,3)	(28,9)
	ETV6-	54	52	0,0	4,1	7,1 (13,6)	5,7	12,9	16,3
	NTRK2			(0,0)	(7,8)		(11,0)	(24,9)	(31,4)
	ETV6-	54	41,7	7,2	0,4	6,4 (15,4)	0,0	10,7	14,4 (34,6)
	NTRK3			(17,2)	(1,0)		(0,0)	(25,8)	
	ETV6-	54	28,3	7,9	1,0	0,0	0,0	9,1	12,1
	NTRK3 (línea celular)			(28,0)	(3,6)	(0,0)	(0,0)	(32,0)	(42,6)
	NCOA4-RET	54	24,8	3,1	0,0	5,9 (23,9)	0,0	6,8	9,5
				(12,3)	(0,0)		(0,0)	(27,3)	(38,3)

Estudio 2

Se evaluó la precisión dentro del laboratorio para la TMB y la MSI. Se usaron cinco muestras de ADN FFPE de CPNM para la TMB y siete muestras de CCR FFPE para la MSI, que incluían tanto microsatélites estables (MSS) como MSI elevada, para evaluar la precisión en diferentes niveles en el intervalo de puntuaciones. Se hicieron experimentos con cada una de las muestras por duplicado entre tres (3) técnicos, tres (3) días, con tres (3) preparaciones de genotecas para tres (3) lotes de reactivos usando tres (3) instrumentos NextSeq 550Dx, de modo que se generaron 54 observaciones por nivel.

Se evaluó la concordancia cualitativa para el estado de MSI. El ensayo de TSO Comprehensive (UE) demostró una concordancia del 100 % para el porcentaje de llamadas positivas y el porcentaje de llamadas negativas para el estado de MSI. En el caso de la TMB, el ensayo de TSO Comprehensive (UE) informa de una puntuación de TMB; la concordancia cualitativa no es aplicable.

La variación total de la puntuación de TMB y MSI, junto con la contribución por fuente (instrumentos, técnicos, lotes, días y componentes residuales), se cuantificó usando un modelo de los componentes de varianza en un intervalo de puntuaciones. La desviación estándar (SD) y el coeficiente de variación (CV) se presentan en la Tabla 70 para la TMB y en la Tabla 71 para la MSI por nivel. Algunos niveles tenían menos de 54 observaciones debido a la presencia de genotecas no válidas.

Tabla 70 Resultados de SD y CV de la puntuación de TMB cualitativos

Nivel	Media de la puntuación de TMB	N intentos válidos	Técnico SD (% de CV)	Instrumento SD (% de CV)	Lote SD (% de CV)	Día SD (% de CV)	SD SD (% de CV)	Total SD (% de CV)
L1	0,3	52	0,00 (0 %)	0,06 23	0,00 (0 %)	0,08 (30 %)	0,40 (146 %)	0,41 (151 %)
L2	8,4	53	0,00 (0 %)	0,14 (2 %)	0,00 (0 %)	0,00 (0 %)	0,71 (8 %)	0,73 (9 %)
L3	15,1	54	0,00 (0 %)	0,00 (0 %)	0,20 (1 %)	0,00 (0 %)	1,16 (8 %)	1,18 (8 %)
L4	20,3	53	0,00 (0 %)	0,00 (0 %)	0,06 (0 %)	0,00 (0 %)	0,56 (3 %)	0,57 (3 %)
L5	42,3	54	0,00 (0 %)	0,00 (0 %)	0,15 (0 %)	0,00 (0 %)	1,37 (3 %)	1,38 (3 %)

Tabla 71 Resultados de SD y CV de la puntuación de MSI cuantitativos

Estado de MSI	Nivel	Media de la puntuación de MSI (%)	N intentos válidos	Técnico SD (% de CV)	Instrumento SD (% de CV)	Lote SD (% de CV)	Día SD (% de CV)	SD SD (% de CV)	Total SD (% de CV)
MS estable	L1	0,80	53	0,35 (43 %)	0,00 (0 %)	0,15 (18 %)	0,00 (0 %)	0,52 (66 %)	0,64 (81 %)
	L2	5,90	53	0,47 (8 %)	0,00 (0 %)	0,84 (14 %)	0,00 (0 %)	1,26 (21 %)	1,58 (27 %)

Estado de MSI	Nivel	Media de la puntuación de MSI (%)	N intentos válidos	Técnico SD (% de CV)	Instrumento SD (% de CV)	Lote SD (% de CV)	Día SD (% de CV)	SD SD (% de CV)	Total SD (% de CV)
MSI	L3	48,68	53	0,19	0,00	0,00	1,19	2,48	2,76
elevada				(0 %)	(0 %)	(0 %)	(2 %)	(5 %)	(6 %)
	L4	56,85	54	1,66	0,00	1,92	0,00	3,07	3,98
				(3 %)	(0 %)	(3 %)	(0 %)	(5 %)	(7 %)
	L5	72,62	54	0,00	0,47	0,34	0,62	1,28	1,54
				(0 %)	(1 %)	(0 %)	(1 %)	(2 %)	(2 %)
	L6	75,29	54	0,00	0,42	0,09	0,00	1,46	1,52
				(0 %)	(1 %)	(0 %)	(0 %)	(2 %)	(2 %)
	L7	78,38	54	0,00	0,00	0,00	0,45	0,95	1,06
				(0 %)	(0 %)	(0 %)	(1 %)	(1 %)	(1 %)

La variación de las puntuaciones de TMB tiende a aumentar con la media, tal y como se espera de las distribuciones teóricas de los datos de recuento. La variación de las puntuaciones de MSI para los niveles cercanos a la puntuación de MSI = 50 es mayor que la variación de las puntuaciones de MSI más cercanas a 0 o 100 coherente con la variabilidad de las distribuciones teóricas de los datos de proporción. El componente residual siguió siendo el que más contribuyó a la varianza total tanto para las puntuaciones de MSI como de TMB, lo que apoya la conclusión de que las puntuaciones son sólidas con respecto a los técnicos, los lotes, los instrumentos y los días.

Se determinaron los valores de C5 y C95 alrededor del umbral del 20,00 % para la MSI usando un perfil de precisión (Tabla 72).

Tabla 72 Intervalos de C5-C95 para la MSI

Puntuación	C5	C95
MSI	17,17 %	23,32 %

Sin embargo, como tanto la MSI como la TMB son biomarcadores complejos, el rendimiento analítico puede variar de una muestra a otra. Es decir, la variación de la TMB no solo depende del valor de la TMB, sino también de la composición de las variantes en la muestra, como el tipo de variante (SNV, Indel) y el nivel de VAF (cercanía al umbral de inclusión). Asimismo, la variación de la MSI no solo depende del valor de la MSI, sino también de la composición de los sitios en la muestra, como el número de sitios que son inestables y la cantidad de inestabilidad por centro.

Se evaluó el efecto del contenido tumoral en las puntuaciones de TMB y MSI. En la mayoría de las muestras, el contenido tumoral ≥30 % tuvo un efecto insignificante en las puntuaciones de TMB por encima de aproximadamente 10 mutaciones por megabase. Las puntuaciones de TMB permanecían relativamente sin cambios con el aumento del contenido tumoral. En las muestras de MSI elevada, el contenido tumoral presentó una correlación lineal positiva con la puntuación de MSI. Las muestras de MSI elevada seguían siendo MSI-H en promedio cuando el contenido tumoral era ≥30 %. Las muestras de endometrio se comportaron de forma claramente diferente a los otros tipos de tejido y se halló que necesitaban una mayor cantidad de contenido tumoral para ser denominadas MSI-H.

Exactitud de la creación de perfiles tumorales

La detección de variantes mediante el ensayo de TSO Comprehensive (UE) se comparó con los resultados de los métodos de referencia. Las variantes pequeñas de ADN y la TMB se compararon con un método de NGS del exoma completo validado externo. Las amplificaciones génicas se compararon con el mismo método de NGS del exoma completo o con el método validado de hibridación in situ dual (DISH) para las amplificaciones de HER2. La MSI se evaluó con una prueba validada de MSI por PCR. Las variantes alternativas de corte y empalme de ARN se compararon con un método de PCR cuantitativa (qPCR) validado. Las fusiones de ROS1 y ALK se compararon con ensayos de FISH validados. Todas las demás fusiones se compararon con un método compuesto que consistía en un ensayo de NGS del exoma completo de ARN validado (RNGS1), un perfil de NGS de regiones de interés (RNGS2) y una PCR digital por gota (ddPCR).

Detección de variantes pequeñas de ADN

La detección de variantes pequeñas de ADN mediante el ensayo de TSO Comprehensive (UE) se comparó con los resultados de la secuenciación del exoma completo (WES) que utiliza la secuenciación del exoma completo con pares de muestras emparejadas de tejido tumoral y normal para la llamada de variantes pequeñas germinales y somáticas. La comparación entre las variantes pequeñas, que consistían en variantes de nucleótido único (SNV), inserciones y deleciones, se basó en 124 muestras de 14 tipos de tejido diferentes que fueron válidas tanto en TSO Comprehensive (UE) como en la WES. TSO Comprehensive (UE), pero no el ensayo de WES, puede detectar variantes de nucleótidos múltiples (MNV, 2-3 pb), lo que requiere la fase de hebra retrasada. TSO Comprehensive (UE) Las MNV se evaluaron como SNV individuales frente a la WES. En la Tabla 73 se muestra un resumen de la concordancia a nivel de variantes, incluidas la concordancia porcentual positiva (PPA) y la concordancia porcentual negativa (NPA) de todas las llamadas de variantes.

Tabla 73 Resumen de concordancia de las llamadas de variantes pequeñas evaluadas mediante el estado germinal o somático

	Variantes somáticas llamadas en WES	Variantes germinales llamadas en WES	Variantes no llamadas en WES
Llamadas por TSO Comprehensive (UE)	382	33 163	426
No llamadas por TSO Comprehensive (UE)	69	61	70 000 481
Total	451	33 224	70 000 907
Concordancia porcentual	PPA: 85 % (382/451), IC del 95 %: [81 %-87 %]	PPA: >99 % (33 163/33 224) IC del 95 %: [99,8 %-99,9 %]	NPA: >99 % (70 000 481/70 000 907) IC del 95 %: [99,999 %- 99,999 %]

En total, TSO Comprehensive (UE) llamó 426 variantes que no se detectaron en el método de WES. Doscientas cuatro (48 %) de estas variantes tenían frecuencias alélicas de variantes por debajo del umbral de llamadas en el método de WES. Del resto de las posibles variantes falsas positivas, había indicios de la llamada de variantes

en el método de WES con poco apoyo. Además, muchas de las variantes tenían un nivel muy bajo de indicios de WES en las muestras normales emparejadas. Este resultado da a entender que estas variantes se perdieron en el tumor mediante WES debido a la contaminación del tumor en el tejido normal.

Detección de carga mutacional del tumor

La concordancia de la TMB se determinó comparando las puntuaciones de TMB (mutaciones somáticas/megabase) entre el método de WES y TSO Comprehensive (UE) de 124 muestras con datos disponibles tanto por TSO Comprehensive (UE) como por WES. El análisis de regresión lineal con la WES como factor pronóstico tuvo una intersección en y de 2,53, una pendiente de 0,89 y un coeficiente de correlación de Pearson de 0,94 (Figura 3).

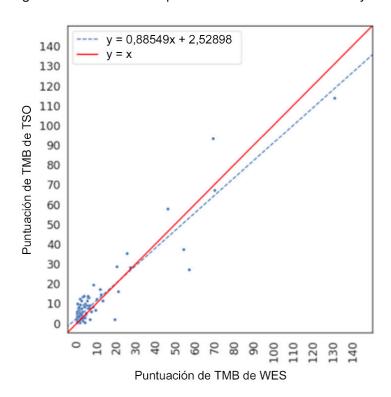


Figura 3 Correlación de puntuación de TMB entre WES y TSO Comprehensive (UE)

Detección de amplificaciones génicas

La detección de las amplificaciones génicas mediante el ensayo de TSO Comprehensive (UE) se comparó con los resultados del mismo ensayo de WES utilizando muestras emparejadas de tejido tumoral y normal o muestras solo con tejido tumoral. Del total de 420 muestras, en 183 se utilizó el método ortogonal en tejido tumoral y normal, y en 237 se utilizó el método solo con tejido tumoral. Las muestras procedían de 14 tipos de tejidos y contenían amplificaciones de 55 genes. TSO Comprehensive (UE) genera informes de amplificaciones génicas de los genes MET y ERBB2. No obstante, se evaluó la exactitud de los 55 genes. En la Tabla 74 se muestra un resumen de las llamadas de amplificación génica.

Tabla 74 Llamadas de amplificación génica

	Positivo en WES	Negativo en WES
TSO Comprehensive (UE) Positivo	337	415
TSO Comprehensive (UE) Negativo	28	24 000
Total	365	24 415
Concordancia porcentual	PPA: 92 % (337/365) IC del 95 %: [89 %, 95 %]	NPA: 98,3 % (24 000/24 415) IC del 95 %: [98,1 %, 98,5 %]

Se analizaron por separado las amplificaciones de ERBB2 (HER2) en los tejidos gástrico y de mama de otras amplificaciones génicas usando un método de hibridación in situ dual (DISH). En total, se analizaron 116 muestras gástricas y de mama, de las cuales 64 se habían caracterizado previamente como positivas para HER2 mediante IHC o FISH. Una muestra no se pudo extraer, 3 muestras no fueron válidas para TSO Comprehensive (UE) y 3 muestras no fueron válidas para el ensayo de DISH. De las 108 muestras, 20 (18,5 %) tuvieron puntuaciones en el límite (entre 1,5 y 2,5) cerca del umbral de DISH de 2,0. Los resultados de concordancia que incluyen la PPA y la NPA de todas las muestras y excluyen los casos de DISH de HER2 en el límite se muestran en la Tabla 75.

Tabla 75 Resumen de la concordancia entre TSO Comprehensive (UE) y DISH de HER2, incluida la amplificación génica de HER2

Amplificación génica de HER2 (Tejidos gástrico y de mama)	DISH de HER2 amplificado	DISH de HER2 no amplificado
TSO Comprehensive (UE) positivo	17 (incluido 1 en el límite)	13 (incluido 1 en el límite)
TSO Comprehensive (UE) negativo	10 (incluidos 6 en el límite)	68 (incluidos 12 en el límite)
Concordancia porcentual que incluye los casos en el límite	PPA: 63 % (17/27) IC del 95 %: [44 %, 78 %]	NPA: 84 % (68/81) IC del 95 %: [74 %, 90 %]
Concordancia porcentual que excluye los casos en el límite	PPA: 80 % (16/20) IC del 95 %: [58 %, 92 %]	NPA: 82 % (56/68) IC del 95 %: [72 %, 90 %]

Detección de inestabilidad de microsatélites

La detección de la inestabilidad de microsatélites mediante el ensayo de TSO Comprehensive (UE) se comparó con los resultados de una prueba de MSI por PCR validada que utiliza muestras emparejadas de tejido tumoral y normal para las pruebas. Se comparó un total de 195 muestras, que cumplen con el requisito de contenido tumoral ≥30 % y que representan 14 tipos de tejido. La MSI por PCR evalúa 5 centros y tiene 3 resultados: MSS (ningún centro inestable), MSI baja (un centro inestable) y MSI elevada (dos o más centros inestables). TSO Comprehensive (UE) evalúa hasta 130 centros de microsatélites y solo clasifica las muestras como MSS o MSI elevada (≥20 % de centros inestables). Las MSI bajas se agruparon con los resultados de MSS para la MSI por PCR. El análisis de concordancia se muestra en la Tabla 76.

Tabla 76 Resumen del análisis de concordancia entre TSO Comprehensive (UE) y MSI por PCR de la inestabilidad de microsatélites de ADN

Inestabilidad MSI	MSI elevada por PCR	MSI baja por PCR	MSS por PCR
TSO Comprehensive (UE) inestable (MSI-elevada)	40	2	0

Inestabilidad MSI	MSI elevada por PCR	MSI baja por PCR	MSS por PCR
TSO Comprehensive (UE) estable (MSS)	3	0	150
Total	43	2	150
Concordancia porcentual	PPA: 93 % (40/43) IC del 95 %: [81 %, 98 %]	NPA: 99 % (150/152) IC del 95 %: [95 %, >99 %]	

Detección de variantes alternativas de corte y empalme de ARN

La exactitud para la detección de variantes alternativas de corte y empalme se calculó comparando los resultados de TSO Comprehensive (UE) con los ensayos de qPCR para detectar la EGFRvIII y el exón 14del de MET, incluyendo un ARN positivo conocido para cada una de las variantes alternativas de corte y empalme. El análisis de concordancia se realizó en un total de 230 muestras de ARN FFPE únicas de los 14 tipos de tejido con datos disponibles tanto por TSO Comprehensive (UE) como por el método de referencia. Todas las muestras se sometieron a prueba para detectar el exón 14del de MET, mientras que las destinadas a la detección de la EGFRvIII se probaron solo en tejido cerebral, respectivamente. Tres muestras se consideraron positivas para el exón 14del de MET por qPCR, pero no por TSO Comprehensive (UE), y tenían un Ct promedio >37, es decir, por debajo del nivel de LoD de TSO Comprehensive (UE). La Tabla 77 resume los resultados de concordancia del estudio.

Tabla 77 Resumen del análisis de concordancia entre el ensayo de TSO Comprehensive (UE) y qPCR para las variantes alternativas de corte y empalme de ARN

Variantes alternativas de corte y empalme de ARN	Positivo en qPCR	Negativo en qPCR
TSO Comprehensive (UE) positivo (EGFRvIII)	3	0
TSO Comprehensive (UE) negativo (EGFRvIII)	0	13
TSO Comprehensive (UE) positivo (Exón 14del de Met)	1	0
TSO Comprehensive (UE) negativo (Exón 14del de Met)	3	217
Total	7	230
Concordancia porcentual	PPA: 57 % (4/7) IC del 95 %: [25 %, 84 %]	NPA: 100 % (230/230) IC del 95 %: [98 %, 100 %]

Detección de fusiones de ARN

Comparación con un método compuesto

Las fusiones de TSO Comprehensive (UE) se compararon con un método compuesto que consistía en un perfil de NGS del exoma completo de ARN (RNGS1), un perfil de fusión de NGS de regiones objetivo (RNGS2) y una PCR digital por gota (ddPCR).

El método de RNGS1 se superpone a todos los genes en los que TSO Comprehensive (UE) puede detectar fusiones. Sin embargo, el límite de detección del método de RNGS1 fue entre 4 y 8 veces el del TSO Comprehensive (UE), en función del número de lecturas de apoyo observadas en las llamadas de fusión superpuestas. Por lo tanto, se utilizó un método compuesto que usaba dos métodos adicionales con mayor sensibilidad, pero menor amplitud, para detectar las fusiones con el método de WES (RNGS1).

Se sometieron a prueba con el RNGS1 un total de 255 muestras únicas de ARN que representaban 14 tipos de tejidos y superaban los criterios de medición de TSO Comprehensive (UE). Dos muestras no fueron válidas para el CC de la muestra del RNGS1 y se excluyeron de los análisis adicionales. De las 82 fusiones llamadas mediante TSO Comprehensive (UE), 4 se excluyeron de la evaluación debido a fallos en el CC de la muestra de RNGS1 y 7 fusiones adicionales no se pudieron llamar debido a la ausencia de las regiones objetivo en el perfil de RNGS1. De las 71 fusiones restantes llamadas mediante TSO Comprehensive (UE), 9 se confirmaron mediante el RNGS1. El RNGS1 llamó 4 fusiones no llamadas mediante TSO Comprehensive (UE).

De las 62 fusiones que fueron positivas en TSO Comprehensive (UE) y que no se detectaron mediante el RNGS1, 13 se superpusieron y se confirmaron mediante el RNGS2. Una fusión se llamó mediante el RNGS2, pero no mediante TSO Comprehensive (UE).

A continuación, se usó la PCR digital por gota para las fusiones llamadas mediante TSO Comprehensive (UE), no llamadas o que no se pudieron llamar mediante el RNGS1 y no evaluables mediante el RNGS2 (49). Además, se usó la ddPCR para evaluar de nuevo 2 de las 4 fusiones falsas negativas en TSO Comprehensive (UE) con el RNGS1 y 2 de las 9 fusiones concordantes en TSO Comprehensive (UE) y RNGS1. Se incluyeron cinco muestras negativas para la fusión con las pruebas de cada muestra positiva para la fusión para garantizar la especificidad. Dieciocho fusiones no se analizaron con la ddPCR debido a la incapacidad de diseñar cebadores/sondas, a la existencia de múltiples pares de genes para la fusión o a la insuficiencia de material FFPE restante. Para la ddPCR, se diseñaron cebadores y sondas contra los puntos de ruptura observados en el ensayo de TSO Comprehensive (UE).

En total, se detectaron 52 fusiones mediante ddPCR, 41 de las cuales se llamaron mediante TSO Comprehensive (UE), pero no se llamaron o no se pudieron llamar mediante el RNGS1. Nueve fusiones se llamaron mediante ddPCR, pero fueron negativas en TSO Comprehensive (UE) o RNGS1. Dos fusiones positivas en ddPCR confirmaron las 2 fusiones concordantes en TSO Comprehensive (UE) y RNGS1. No se detectó ninguna fusión mediante ddPCR en los 2 negativos falsos en TSO Comprehensive (UE) evaluados de nuevo con el RNGS1; sin embargo, estos se contaron como negativos falsos basándose en la comparación de RNGS1.

Los métodos compuestos de resultados de concordancia RNGS1, RNGS2 y ddPCR para las fusiones se muestran en la Tabla 78.

Las 63 fusiones concordantes con el método compuesto representaron 43 genes en el perfil de TSO Comprehensive (UE). No obstante, las fusiones se pueden informar solo si se producen en los 23 genes indicados en el *Perfil de genes del ensayo de TSO Comprehensive (UE)*, en la página 2.

Tabla 78 Tabulación cruzada de los resultados de TSO Comprehensive (UE) frente a los del método compuesto para las fusiones de ARN (253 muestras)

Fusiones	Positivo en el método compuesto	Negativo en el método compuesto
TSO Comprehensive (UE) Positivo	63¹	18

Fusiones	Positivo en el método compuesto	Negativo en el método compuesto
TSO Comprehensive (UE) Negativo	14 ²	13 821
Total	77	13 839
Concordancia porcentual	PPA: 82 % (63/77) IC del 95 %: [72 %, 89 %]	NPA: 99,9 % (13 821/13 839) IC del 95 %: [99,8 %, 99,9 %]

¹ 63 positivos verdaderos en TSO Comprehensive (UE) = 9 positivos concordantes con el RNGS1 + 13 positivos concordantes con el RNGS2 + 41 positivos concordantes con la ddPCR.

Comparación con el método de FISH para las fusiones de ROS1 y ALK

Veinticinco muestras de CPNM se analizaron mediante FISH para detectar las fusiones de ROS1 y ALK y 5 muestras adicionales de CPNM se probaron para detectar la fusión de ROS1, respectivamente. Ocho muestras no superaron el FISH para detectar la ROS1 debido a que el tejido era inadecuado. Dos fusiones de ROS1 y una de ALK se detectaron mediante TSO Comprehensive (UE) y FISH. No se observaron resultados que no concordaran. La Tabla 79 resume los resultados de concordancia de TSO Comprehensive (UE) y el método de FISH para las fusiones de ROS1 y ALK.

Tabla 79 Resumen de los resultados de concordancia de TSO Comprehensive (UE) y el método de FISH para las fusiones de ROS1 y ALK

ALK + ROS1	Positivo en FISH	Negativo en FISH
TSO Comprehensive (UE) Positivo	3	0
TSO Comprehensive (UE) Negativo	0	44
Total	3	44
Concordancia porcentual	PPA: 100 % (3/3) IC del 95 %: [44 %, 100 %]	NPA: 100 % (44/44) IC del 95 %: [92 %, 100 %]

Validez de las muestras

La validez de las muestras (primer intento) se midió en 181 muestras únicas de ARN y 272 muestras únicas de ADN a partir de bloques FFPE almacenados ≤5 años. Estas muestras se seleccionaron en función del tipo de tejido y el material disponible; se desconoce la validez del ensayo. Los criterios de medición de CC de la genoteca se deben superar para que el tipo de variante se considere válido. La validez de las muestras se evaluó por separado para cada tipo de variante (variantes pequeñas de ADN/TMB, MSI, amplificaciones génicas, fusiones/variantes alternativas de corte y empalme) y se muestra en la Tabla 80.

Tabla 80 Validez de las muestras

Tipo de variante Validez de las muestras	
Fusiones/variantes alternativas de corte y empalme (ARN)	76 %
Variantes pequeñas de ADN/TMB	75 %

² 14 negativos falsos en TSO Comprehensive (UE) = 4 negativos no concordantes con el RNGS1 + 1 negativo no concordante con el RNGS2 + 9 negativos no concordantes con la ddPCR.

Tipo de variante	Validez de las muestras
MSI	72 %
Amplificación génica	94 %

Resumen de validación analítica para declaraciones para la creación de perfiles tumorales

Basándose en los datos de límite de detección, precisión, reproducibilidad y exactitud, TSO Comprehensive (UE) está validado analíticamente para lo siguiente:

- Variantes pequeñas de ADN: SNV, MNV, inserciones y deleciones
- TMB
- MSI
- Amplificaciones génicas de MET y ERBB2 (HER2) (consulte la Perfil de genes del ensayo de TSO Comprehensive (UE), en la página 2).
- Veintitrés genes en los que se pueden detectar fusiones (consulte la *Perfil de genes del ensayo de TSO Comprehensive (UE)*, en la página 2).
- Variantes alternativas de corte y empalme de EGFR y MET (consulte la Perfil de genes del ensayo de TSO Comprehensive (UE), en la página 2).

Rendimiento clínico de NTRK

A fin de validar el ensayo de TSO Comprehensive (UE) como prueba diagnóstica acompañante (CDx) para la selección de pacientes para el tratamiento con VITRAKVI® (larotrectinib), las muestras de pacientes inscritos en los ensayos clínicos de larotrectinib (NCT02122913, NAVIGATE NCT02576431, SCOUT NCT02637687; denominadas colectivamente como muestras de ensayo de larotrectinib), usando la fecha tope para la inclusión de datos del 15 de julio de 2019, complementadas con muestras de tejido FFPE de origen comercial, se analizaron para respaldar un estudio de exactitud del ensayo de TSO Comprehensive (UE) y un estudio de reconducción clínica.

NCT02122913 fue un estudio multicéntrico, sin enmascaramiento, en fase I, de aumento de la dosis, en pacientes adultos con tumores sólidos avanzados (no restringido) no seleccionados por cáncer positivo a la fusión NTRK. Tras la parte de aumento de la dosis del estudio, se inició una ampliación de la dosis para los pacientes con cáncer positivo a la fusión NTRK documentado y para los pacientes que el investigador consideraba que podrían beneficiarse de un inhibidor de TRK altamente selectivo. NAVIGATE NCT02576431 es un estudio en desarrollo, multicéntrico, sin enmascaramiento, en fase II, en canasta, en pacientes de 12 años o más con tumores sólidos avanzados recurrentes con una fusión NTRK documentada según la evaluación de un laboratorio externo. SCOUT NCT02637687 es un estudio continuo, multicéntrico, sin enmascaramiento, en fase I/II, en pacientes pediátricos de edades comprendidas entre el nacimiento y los 21 años con tumores sólidos o primarios del sistema nervioso central (SNC) avanzados.

De los pacientes positivos a la fusión NTRK incluidos en el estudio del ensayo de TSO Comprehensive (UE), 164 formaron el conjunto de eficacia principal ampliado de larotrectinib (ePAS4).

Estudio de exactitud para la detección de fusiones NTRK1, NTRK2 y NTRK3

La exactitud del ensayo de TSO Comprehensive (UE) para detectar fusiones NTRK (NTRK1, NTRK2 o NTRK3) en pacientes con tumores sólidos se demostró evaluando la concordancia de los resultados de fusión NTRK entre el ensayo de TSO Comprehensive (UE) y un método ortogonal validado basado en la NGS.

Se realizó un estudio retrospectivo y de observación. Las muestras de prueba de larotrectinib y las muestras complementarias se analizaron con el ensayo de TSO Comprehensive (UE) en un centro externo y con un método ortogonal en un laboratorio central. Se estimó la exactitud de las llamadas de fusión NTRK del ensayo de TSO Comprehensive (UE) en relación con el método ortogonal; se calcularon la concordancia porcentual positiva (PPA), la concordancia porcentual negativa (NPA) y los intervalos de confianza (IC) del 95 % bilaterales asociados.

Hubo 516 muestras analizadas con el ensayo de TSO Comprehensive (UE) o el método ortogonal. De estas muestras, 499 se analizaron mediante ambos métodos. Diecisiete de las 516 muestras no se analizaron con uno de los ensayos debido a una extracción fallida, una razón desconocida (en el caso del método ortogonal) o una desviación del protocolo. De las 499 muestras analizadas mediante ambos métodos, 170 (34,1 %) eran muestras de prueba de larotrectinib y 329 (65,9 %) eran muestras complementarias.

En la Tabla 81 se muestra una tabulación cruzada de los resultados de las 499 muestras. De las 499 muestras, 85 tuvieron resultados no válidos del ensayo TSO Comprehensive (UE); de estas 85, 53 también tuvieron resultados no válidos del método ortogonal. Otras 7 muestras tuvieron resultados no válidos del método ortogonal. Por tanto, 407 de las 499 muestras tuvieron resultados válidos en ambos métodos.

Tabla 81 Estudio de exactitud de NTRK: tabulación cruzada del resultado de TSO Comprehensive (UE) frente al resultado del método ortogonal para la detección de fusiones NTRK

Resultado del método ortogonal				
Resultado del ensayo de TSO Comprehensive (UE)	Positivo a la fusión NTRK	Negativo a la fusión NTRK	No válido	Total
Positivo a la fusión NTRK	114	16	1	131
Negativo a la fusión NTRK	4	273	6	283
No válido*	4	28	53	85
Total	122	317	60	499

^{*} Los resultados no válidos del ensayo de TSO Comprehensive (UE) provienen del nivel de muestra y experimento.

Los análisis de concordancia, excluyendo e incluyendo los resultados no válidos del ensayo de TSO Comprehensive (UE), se muestran en la Tabla 82. Excluyendo los resultados no válidos del ensayo de TSO Comprehensive (UE), la PPA fue del 96,6 % (114/118; IC del 95 %: 91,5 %-99,1 %) y la NPA fue del 94,5 % (273/289; IC del 95 %: 91,2 %-96,8 %).

Tabla 82 Estudio de exactitud de NTRK: PPA y NPA del resultado del ensayo de TSO Comprehensive (UE) en comparación con el del método ortogonal para la detección de fusiones NTRK

	Excluyendo los resultados no válidos del ensayo de TSO Comprehensive (UE)		Incluyendo los resultados no válidos del ensayo d TSO Comprehensive (UE)	
Medida de concordancia	Concordancia, % (n/N)	IC del 95 %*	Concordancia, % (n/N)	IC del 95 %*
PPA	96,6 % (114/118)	91,5 %-99,1 %	93,4 % (114/122)	87,5 %-97,1 %
NPA	94,5 % (273/289)	91,2 %-96,8 %	86,1 % (273/317)	81,8 %-89,7 %

^{*} IC del 95 % basado en el método de Clopper-Pearson (exacto).

Estudio de reconducción clínica para la detección de fusiones NTRK1, NTRK2 y NTRK3

La validez clínica del ensayo de TSO Comprehensive (UE) para la detección de fusiones NTRK1, NTRK2 o NTRK3 en pacientes con tumores sólidos que se pueden beneficiar del tratamiento con larotrectinib se demostró en un estudio de reconducción clínica. El estudio se llevó a cabo para evaluar la eficacia clínica del ensayo de TSO Comprehensive (UE) para identificar a los pacientes con fusiones NTRK1, NTRK2 o NTRK3 positivas para el tratamiento con larotrectinib y para evaluar la concordancia entre el ensayo de TSO Comprehensive (UE) y los métodos de prueba local (LT) (usados para determinar el estado de la fusión NTRK para las pruebas clínicas de larotrectinib).

Los métodos de LT incluyeron la NGS, la hibridación in situ fluorescente (FISH), la reacción en cadena de la polimerasa (PCR) y los ensayos NanoString. Las fusiones NTRK (NTRK3 de ETV6) se dedujeron para los pacientes con fibrosarcoma infantil que tenían una translocación de ETV6 documentada e identificada mediante FISH. La mayoría de los 235 pacientes de la prueba de larotrectinib con estado de fusión NTRK conocido se habían analizado mediante métodos de NGS.

Los estudios NAVIGATE NCT02576431 y SCOUT NCT02637687 siguen en proceso de inscripción. Hasta la fecha tope para la inclusión de datos de 15 de julio de 2019, se habían inscrito 279 pacientes. De los 279 pacientes, 208 eran positivos a la fusión NTRK. De los 208 pacientes positivos, 164 formaron el ePAS4 de larotrectinib.

El criterio principal de valoración para el análisis de la eficacia de larotrectinib fue la tasa de respuesta global (ORR) según la evaluación del comité de revisión independiente (IRC) en un conjunto de datos agrupado de los 3 estudios clínicos. La ORR se evaluó en función de la proporción de pacientes con mejor respuesta global de remisión completa confirmada o remisión parcial confirmada según los criterios RECIST, versión 1.1. La ORR en el ePAS4 de larotrectinib fue del 72,6 % (IC del 95 %: [65,1 %, 79,2 %]) e incluyó a pacientes con 16 tipos de tumores diferentes.

Recuento de muestras

El conjunto de muestras incluía la representación de una amplia gama de tipos de tumores y muestras de pacientes pediátricos y adultos.

Había 279 pacientes inscritos en los estudios de larotrectinib a fecha de 15 de julio de 2019. De estos, 235 pacientes tenían un estado de fusión NTRK conocido, determinado mediante un método de LT: 208 eran positivos y 27, negativos. En 44 pacientes, el estado de la fusión NTRK era desconocido, ya que la prueba no era necesaria para que los pacientes fuesen aptos en las fases de aumento de la dosis de los estudios NCT02122913 y SCOUT NCT02637687. Para el estudio de reconducción clínica del ensayo de TSO Comprehensive (UE), fueron elegibles para este estudio las muestras de los pacientes de la prueba de larotrectinib inscritos a fecha de 15 de julio de 2019 con un estado de fusión NTRK conocido (208 pacientes positivos y 27 pacientes negativos) y las muestras complementarias que se determinaron como negativas a la fusión NTRK mediante métodos representativos de LT.

De las 208 muestras de ensayo positivas de larotrectinib, 154 tenían una muestra disponible para el ensayo de TSO Comprehensive (UE). De estas, 138 tuvieron resultados válidos. Quince muestras no fueron válidas debido a fallos en los criterios de medición de calidad de la secuenciación de la muestra y una muestra no se analizó debido a una desviación del protocolo. De las 27 muestras de ensayo negativas de larotrectinib, 24 tenían una muestra disponible para su análisis. De estas, 22 tuvieron resultados válidos en TSO Comprehensive (UE). Dos muestras fueron no válidas debido a fallos en los criterios de medición de calidad de la secuenciación de la muestra.

Las muestras complementarias se examinaron usando uno de los dos métodos representativos de LT. Se obtuvieron más de 350 muestras y se examinó su contenido tumoral. De las muestras complementarias que cumplían los requisitos de la muestra, 266 se extrajeron con éxito y se confirmó que eran negativas a la fusión NTRK mediante un método de LT representativo. De estas muestras, 260 estaban disponibles para las pruebas del ensayo de TSO Comprehensive (UE), en las que 222 tenían resultados válidos. Hubo 38 muestras que no fueron válidas debido a fallos en los criterios de medición de secuenciación de la muestra (n = 25) o en el experimento de secuenciación (n = 13). El conjunto total de negativos a la fusión NTRK estaba compuesto por 222 muestras complementarias y 22 muestras de prueba de larotrectinib.

Resultados de concordancia

La concordancia de los resultados de TSO Comprehensive (UE) en relación con los resultados de los métodos de LT, con y sin resultados no válidos de TSO Comprehensive (UE), se muestra en la Tabla 83.

Tabla 83 Estudio de reconducción clínica de NTRK: Concordancia entre el ensayo de TSO Comprehensive (UE) y los métodos de LT para la detección de fusiones NTRK

Excluyendo los resultados no válidos del ensayo de TSO Comprehensive (UE)		Incluyendo los resultados no válidos del ensayo de TSO Comprehensive (UE)		
Medida de concordancia	% de concordancia (n/N)	IC del 95 %*	% de concordancia (n/N)	IC del 95 %*
PPA	89,1 % (123/138)	82,7 %-93,8 %	80,4 % (123/153)	73,2 %-86,4 %
NPA	96,3 % (235/244)	93,1 %-98,3 %	82,7 % (235/284)	77,8 %-87,0 %
OPA	93,7 % (358/382)	90,8 %-95,9 %	81,9 % (358/437)	78,0 %-85,4 %

^{*} Los IC del 95 % bilaterales se calcularon usando el método de Clopper-Pearson (exacto).

El análisis de sensibilidad con respecto a los resultados del ensayo de TSO Comprehensive (UE) que faltan demostró la solidez del análisis de concordancia. Los resultados del ensayo de TSO Comprehensive (UE) que faltan para los pacientes positivos a la fusión en LT NTRK (n = 70) se imputaron mediante un modelo de regresión logística. Las estimaciones de concordancia, incluyendo los valores imputados, se muestran en la Tabla 84.

Tabla 84 Estudio de reconducción clínica de NTRK: Concordancia entre el ensayo de TSO Comprehensive (UE) y los métodos de LT para la detección de fusiones NTRK incluyendo los valores imputados para los pacientes positivos en LT con los resultados de ensayo de TSO Comprehensive (UE) que faltan

Medida de concordancia	% de coincidencia	IC del 95 %*
PPA	85,2 %	78,6 %-91,7 %
NPA	96,3 %	93,9 %-98,7 %
OPA	91,2 %	87,9 %-94,5 %

No se imputaron los resultados del ensayo de TSO Comprehensive (UE) que faltaban en los pacientes negativos a la fusión en LT.

* Los IC del 95 % bilaterales se calcularon basándose en el método de Boot de imputación múltiple. El método de Boot de imputación múltiple es un paso de autoevaluación que se incluye en la imputación múltiple (Schomaker y Heumann, 2018).

Las concordancias entre el ensayo de TSO Comprehensive (UE) y las LT según el tipo de método (por ejemplo, NGS de ARN, FISH) se muestran en la Tabla 85.

Tabla 85 Estudio de reconducción clínica de NTRK: Concordancia entre el ensayo de TSO Comprehensive (UE) y los métodos de LT para la detección de fusiones NTRK según el tipo de método de LT

Tipo de método de LT	Medida de concordancia	% de concordancia (n/N)	IC del 95 % ¹
NGS de ADN	PPA	84,2 % (32/38)	68,7 %-94,0 %
	NPA	88,9 % (16/18)	65,3 %-98,6 %
	OPA	85,7 % (48/56)	73,8 %-93,6 %
NGS de ARN²	PPA	91,5 % (75/82)	83,2 %-96,5 %
	NPA	96,9 % (218/225)	93,7 %-98,7 %
	OPA	95,4 % (293/307)	92,5 %-97,5 %
FISH	PPA	80,0 % (8/10)	44,4 %-97,5 %
	NPA	No calculado (1/1)	No calculado
	OPA	81,8 % (9/11)	48,2 %-97,7 %
PCR	PPA	100,0 % (8/8)	63,1 %-100,0 %
	NPA	No calculado (0/0)	No calculado
	OPA	100,0 % (8/8)	63,1 %-100,0 %

No calculado: En el caso de los subgrupos con un recuento de muestras <5, no se calcularon las estadísticas de concordancia.

¹ Los IC del 95 % bilaterales se calcularon usando el método de Clopper-Pearson (exacto).

² Incluye métodos de NGS que usan ARN solo y tanto ADN como ARN.

De las 437 muestras analizadas con el ensayo de TSO Comprehensive (UE), 24 tuvieron resultados que no concordaban con las LT: 15 fueron positivas en las LT y negativas en el ensayo de TSO Comprehensive (UE) y 9 fueron negativas en las LT y positivas en el ensayo de TSO Comprehensive (UE). De las 24 muestras con resultados que no concordaban, 8 se analizaron con un método de LT de NGS de ADN, 14 con un método de LT de NGS de ARN y 2 con FISH.

Un método de NGS independiente validado confirmó los resultados del ensayo de TSO Comprehensive (UE) en 14 de las 24 muestras con resultados que no concordaban. En las 10 muestras restantes, los resultados del ensayo de TSO Comprehensive (UE) no concordaban ni con el método de LT ni con el método de NGS independiente.

Resultados de eficacia clínica

Dentro de la cohorte ePAS4, la eficacia de larotrectinib en la población positiva en LT de TSO Comprehensive (UE) (97 pacientes, ORR = 78,4 %, IC del 95 %: [68,8 %, 86,1 %]) fue similar a la eficacia de larotrectinib en la población total del ePAS4 (164 pacientes, ORR = 72,6 %, IC del 95 %: [65,1 %, 79,2 %]) (Tabla 86). De los 97 pacientes positivos en TSO Comprehensive (UE) en el ePAS4, 28 (28,9 %) pacientes lograron una remisión completa/remisión quirúrgica completa y 48 (49,5 %) pacientes lograron una remisión parcial.

De los 13 pacientes negativos en TSO Comprehensive (UE), población positiva en LT, 1 (7,7 %) mostró una remisión completa y 2 (15,4 %) una remisión parcial con el tratamiento de larotrectinib.

Tabla 86 Estudio de reconducción clínica de NTRK: ORR para los pacientes positivos en LT con los resultados de LT y TSO Comprehensive (UE) en ePAS4

		Positivo en fusión en LT N = 164	TSO Comprehensive (UE) Positivo y positivo en LT N = 97	TSO Comprehensive (UE) Negativo y positivo en LT N = 13
Mejor	Remisión completa	31	22	1
respuesta		(18,9 %)	(22,7 %)	(7,7 %)
global, n	Respuesta quirúrgica completa	8	6	0
(%)		(4,9 %)	(6,2 %)	
	Remisión parcial	80	48	2
		(48,8 %)	(49,5 %)	(15,4 %)
	Enfermedad estable	25	13	4
		(15,2 %)	(13,4 %)	(30,8 %)
	Enfermedad progresiva	13	6	5
		(7,9 %)	(6,2 %)	(38,5 %)
	No evaluable	7	2	1
		(4,3 %)	(2,1 %)	(7,7 %)
Tasa de	Número de pacientes, n	164	97	13
respuesta global	Número de pacientes con CR + sCR + PR, n	119	76	3
	% de ORR (IC del 95 %*)	72,6 %	78,4 %	23,1 %
		(65,1 %,	(68,8 %,	(5,0 %,
		79,2 %)	86,1 %)	53,8 %)

Instrucciones de uso de TruSight™ Oncology Comprehensive (UE)

Abreviaturas: CR = remisión completa, PR = remisión parcial, sCR = remisión quirúrgica completa.

* El intervalo de confianza del 95 % bilateral se calculó usando el método de Clopper-Pearson (exacto).

A 54 pacientes les faltan los resultados del ensayo de TSO Comprehensive (UE).

Los datos de este estudio sirven para respaldar la seguridad y la eficacia del ensayo de TSO Comprehensive (UE) cuando se usa para identificar a los pacientes con tumores sólidos con fusiones NTRK que pueden ser aptos para el tratamiento con larotrectinib.

Referencias bibliográficas

- 1. American Society of Clinical Oncology. www.asco.org. Fecha de consulta: 3 de octubre de 2016.
- 2. European Society for Medical Oncology. www.esmo.org. Fecha de consulta: 3 de octubre de 2016.

Historial de revisiones

Revisión	Fecha	Descripción del cambio
v06	Febrero de	Declaraciones adicionales en la sección Limitaciones
	2023	 Actualizaciones lingüísticas por motivos de convención, gramática y claridad
		 Corrección de las tablas 21, 28, 29, 32, 35, 36 y 72
		 Declaración sobre la presencia de precipitados en el reactivo FSM
		 Actualización de las especificaciones del termociclador y la cubeta en la lista de equipos y materiales
v05	Septiembre	Adición de los números de referencia v2.3.5 del módulo de análisis de TSO Comprehensive
	de 2022	• Eliminación de los números de referencia v2.3.3 del módulo de análisis de TSO Comprehensive
		Actualización de la terminología en la sección Límite del blanco
v04	Junio de	Adición de los números de referencia v2.3.5 del módulo de análisis de TSO Comprehensive
	2022	 Eliminación de los números de referencia v2.3.3 del módulo de análisis de TSO Comprehensive
		Actualización de la terminología en la sección Límite del blanco
v03	Abril de	Se ha añadido la información característica de rendimiento relacionada con las fusiones NTRK
	2022	 Se ha añadido la marca SOLO PARA EXPORTACIÓN
		 Se ha actualizado la declaración de uso previsto para añadir la especificación de CDx de NTRK1-3
		• Se ha ampliado la información sobre los componentes del producto para incluir los números de referencia de
		los componentes de software
v02	Febrero de	Corrección de un error de referencia de tabla
	2022	 Se ha añadido la limitación relacionada con las variantes germinales y somáticas
		 Se ha aclarado la redacción en relación con la detección de amplificación génica
v01	Diciembre	Limitaciones del experimento actualizadas
	de 2021	• Aclaración de las especificaciones del soporte magnético y del termociclador en las listas de equipos y
		materiales
v00	Noviembre	Publicación inicial
	de	
	2021	

Patentes y marcas comerciales

Este documento y su contenido son propiedad exclusiva de Illumina, Inc. y sus afiliados ("Illumina") y están previstos solamente para el uso contractual de sus clientes en relación con el uso de los productos descritos en él y no para ningún otro fin. Este documento y su contenido no se utilizarán ni distribuirán con ningún otro fin ni tampoco se comunicarán, divulgarán ni reproducirán de ninguna otra forma sin el consentimiento previo por escrito de Illumina. Illumina no transfiere mediante este documento ninguna licencia bajo sus derechos de patente, marca comercial, derechos de autor ni derechos consuetudinarios o derechos similares de terceros.

Para asegurar el uso correcto y seguro de los productos descritos en este documento, el personal cualificado y adecuadamente capacitado debe seguir las instrucciones incluidas en él de manera rigurosa y expresa. Se debe leer y entender completamente todo el contenido de este documento antes de usar estos productos.

SI NO SE LEE COMPLETAMENTE EL DOCUMENTO Y NO SE SIGUEN EXPRESAMENTE TODAS LAS INSTRUCCIONES DESCRITAS EN ESTE, PODRÍAN PRODUCIRSE DAÑOS EN EL PRODUCTO, LESIONES PERSONALES, INCLUIDO EN LOS USUARIOS U OTRAS PERSONAS, Y DAÑOS EN OTROS BIENES, Y QUEDARÁ ANULADA TODA GARANTÍA APLICABLE AL PRODUCTO.

ILLUMINA NO ASUME RESPONSABILIDAD ALGUNA DERIVADA DEL USO INCORRECTO DE LOS PRODUCTOS AQUÍ DESCRITOS (INCLUIDAS LAS PIEZAS O EL SOFTWARE).

© 2023 Illumina, Inc. Todos los derechos reservados.

Todas las marcas comerciales pertenecen a Illumina, Inc. o a sus respectivos propietarios. Si desea obtener información específica sobre las marcas comerciales, consulte www.illumina.com/company/legal.html.

Información de contacto

Illumina, Inc.
5200 Illumina Way
San Diego, California 92122 (EE. UU.)
+1 800 809 ILMN (4566)
+1 858 202 4566 (fuera de Norteamérica)
techsupport@illumina.com
www.illumina.com

Etiquetado de productos

Para obtener una información detallada sobre los símbolos que aparecen en las etiquetas o en el embalaje del producto, consulte la leyenda que se ofrece en support.illumina.com en la ficha *Documentation* (Documentación) del kit.